期刊文献+

基于监测波峰绝对积分的双折射光子晶体光纤环镜轴向应变传感器研究 被引量:2

Study on the Axial Strain Sensor of Birefringence Photonic Crystal Fiber Loop Mirror Based on the Absolute Integral of the Monitoring Peak
下载PDF
导出
摘要 理论推导了双折射光纤环镜波长变化与轴向应变的公式,研究表明:双折射光子晶体光纤环镜轴向应变灵敏度比传统双折射光纤环镜大为减小。通过监测双折射光子晶体光纤环镜波长的变化,来实现轴向应变的测量就变得较为困难;且输出干涉光谱局部呈凹凸不平,波长监测容易导致数据测量误差。实验监测双折射光子晶体光纤环镜应变光谱,对应变光谱分析发现:随着应变增加,监测波峰下的绝对积分呈现减小的趋势。进一步精确计算分析发现:监测波峰下的绝对积分与应变成线性关系。基于此,提出了通过监测波峰下的绝对积分的变化,来实现轴向应变的测量。波峰下的绝对积分是表征各波长光强的综合性能指标,通过监测波峰下的绝对积分的变化,来实现轴向应变的测量,不仅可以克服双折射光子晶体光纤环镜监测波长变化的困难,而且还可以克服波长监测局部寻优导致的测量误差。 Abstract In the present paper, the theoretical expression of the wavelength change and the axial strain of birefringence fiber loop mirror is developed. The theoretical result shows that the axial strain sensitivity of birefringence photonic crystal fiber loop mirror is much lower than conventional birefringence fiber loop mirror. It is difficult to measure the axial strain by monitoring the wavelength change of birefringence photonic crystal fiber loop mirror, and it is easy to cause the measurement error because the output spectrum is not perfectly smoott~ The different strain spectrum of birefringence photonic crystal fiber loop mirror was measured experimentally by an optical spectrum analyzer. The measured spectrum was analysed. The results show that the abso- lute integral of the monitoring peak decreases with increasing strain and the absolute integral is linear versus strain. Based on the above results, it is proposed that the axial strain can be measured by monitoring the absolute integral of the monitoring peak in this paper. The absolute integral of the monitoring peak is a comprehensive index which can indicate the light intensity of differ- ent wavelength. This method of monitoring the absolute integral of the monitoring peak to measure the axial strain can not only overcome the difficulty of monitoring the wavelength change of birefringence photonic crystal fiber loop mirror, but also reduce the measurement error caused by the unsmooth output spectrum.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第12期3273-3277,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(51275239) 国家自然科学基金国际合作与交流项目(51161120326) 国家自然科学基金青年科学基金项目(51005124)资助 航空科学基金项目(20125652055) 高等学校博士学科点专项科研基金项目(2012321811003) 江苏高校优势学科建设工程 江苏省大学生实践创新训练计划省级指导项目(201310298085X)
关键词 光子晶体光纤 光纤环镜 波长变化 轴向应变 绝对积分 Photonic crystal fiber Fiber loop mirror Wavelength change Axial strain Absolute integrate
  • 相关文献

参考文献17

  • 1Kim D H,Kang J U.Opt.Express,2004,12(19):4490.
  • 2Sun G Y,Tang H J,Hu Y H,et al.IEEE Photonic.Tech.L.,2012,24(7):587.
  • 3Frazao O,Baptista J M.IEEE SENS.J.,2007,7(10):1453.
  • 4Starodumov A N,Zenteno L A,Monzon D,et al.Appl.Phys.Lett.,1997(1),70:19.
  • 5Liu Y G,Liu B,Feng X H,et al.Appl.Opt.,2005,44(12):2382.
  • 6Gong H P,Chan C C,Zu P,et al.Opt.Commun.,2010,283:3142.
  • 7Dong B,Zhao Q D,Lvjun F,et al.Appl.Opt.,2006,45(30):7767.
  • 8Zhong C,Shen C Y,You Y,et al.Sens.Actuators B Chem.,2012,168:360.
  • 9Thakur H V,Nalawade S M,Saxena Y,et al.Sens.Actuators A Phys.,2011,167:204.
  • 10Zhao C L,Zhao J R,Jin W,et al.Opt.Commun.,2009,282:4077.

二级参考文献17

  • 1Smith K, Doran N J, Wigley P G J. Optics Letters, 1990, 15(22): 1294.
  • 2Bergh R A, Lefevre H C, Shaw H J. J. Lightwave Technology, 1984, 2(2): 91.
  • 3Yoshida E, Kimura Y, Nakazawa M. Applied Physics Letters, 1992, 60(8): 932.
  • 4Liu Y, Liu B, Feng X, et al. Appl. Opt., 2005, 44(12): 2382.
  • 5Frazo O L, Marques M, Santos S, et al. IEEE Photon Technol. Lett., 2006, 18: 2407.
  • 6Sun G, Moon D S, Chung Y. IEEE Photon Technol. Lett., 2007, 19(24): 2027.
  • 7Zhang Feng, John W Y Lit. Appl. Opt., 1992, 31(9): 1239.
  • 8Chmielewska E, Urbanczyk W, Bick W J. Appl. Opt., 2003, 42(31): 6284.
  • 9LIAO Yanbiao, LAI Shurong, YIN Xiaogang, et al. SPIE, 1994, 2074: 302.
  • 10Lim K S, Pua C H, Harun S W, et al. Optics & Laser Technology, 2010, 42: 377.

共引文献3

同被引文献22

  • 1孙尧,贾波,张天照.基于反馈环全光纤干涉的定位系统[J].传感器与微系统,2006,25(1):44-46. 被引量:23
  • 2张亚妮,任立勇,王丽莉,苗润才.高双折射光子晶体保偏光纤研究进展[J].量子电子学报,2006,23(5):577-582. 被引量:6
  • 3KNIGHT J C,RUSSELL P St J. New ways to guide light[J],Science, 2002, 296(5566): 276-277.
  • 4ZHANG Ya-ni. Design and optimization of high-birefringencelow-loss crystal fiber with two zero-dispersion wavelengths fornonlinear effects [J], Applied Optics , 2011, 50(25): 125-130.
  • 5YUE Yang, KAI Gui-yun, WANG Zhi, et al. Highlybirefringent elliptical-hole photonic crystal fiber with squeezedhexagonal lattice[J]. Optics Letters , 2007,32(5) : 469-471.
  • 6CHEN Da-ru,SHEN Lin-fang. Ultrahigh birefringentphotonic crystal fiber with ultralow confinement loss [ J].IEEE Photonics Technology Letters ., 2007, 19(4) : 185-187.
  • 7LIOU Jia-hong,HUANG Sheng-shuo, YU Chin-ping. Loss-reduced highly birefringent selectively liquid-filled photoniccrystal fibers[J]. Optics Communications , 2009,283(2010):971-974.
  • 8HAMEED M F O , OBAYYA S S A. Modal analysis of anovel soft glass photonic crystal fiber with liquid crystal core[J]. Journal of Lightwave Technology,2012,30(1): 96-102.
  • 9SAMOC A. Dispersion of refractive properties of solvents:chloroform, toluene, benzene, and carbon disulfide inultraviolet, visible, and near-infrared [ J ]. Journal ofApplied Physics , 2003,94(9): 6167-6174.
  • 10SZPULAK M, STATKIEWICZ G, OLSZEWSKI J, et al.Experimental and theoretical investigations of birefringentholey fibers with a triple defect[J], Applied Optics,2005,44(13): 2652-2658.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部