期刊文献+

基于基因扰动及变分逼近技术的基因调控网络推断

Variational approximation inference for gene regulatory networks from gene perturbations
下载PDF
导出
摘要 为了有效提高基因调控网络推断的精度,基于基因表达数据和基因扰动数据,将基因调控网络建模为结构方程模型,并进一步转化为验证性因子分析(CFA)模型,然后使用贝叶斯方法求解CFA模型参数.在贝叶斯分析中,为减少计算量,不采用常用的马尔科夫-蒙特卡洛抽样方法,而是采用变分逼近技术对参数的联合后验分布进行因式化,并获得参数的后验包含概率分布及参数的后验分布.同时使用重要性抽样技术对CFA模型的推断参数进行加权平均.仿真结果表明,CFA模型和变分逼近技术是有效和可靠的.根据实验数据,使用所提算法推导了具有35个基因的酵母基因调控网络. To improve the inference accuracy of gene regulatory networks (GRN),using both gene perturbations and gene expression data,GRN is modeled as a structural equation model (SEM),and further transformed into the confirmatory factor analysis (CFA)model.The Bayesian approach is used to infer the parameters of the regulatory networks.Instead of the Markov chain Monte Carlo (MCMC)method,the variational approximation method (VAM)is applied for its lower computa-tion cost,which factorizes the joint posterior distribution of parameters,and obtains the posterior in-clusion probability distribution and the posterior distribution of parameters.An importance sampling technique is then applied to obtain the weighted average of the CFA inferred parameters.Simulations are carried out to verify the effectiveness and reliability of the CFA model and the variational approx-imation.Based on the experimental data,the regulatory interactions among a 35 yeast genes network are identified with the proposed VAM algorithm.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期1147-1151,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61271207) 江苏省自然科学基金资助项目(BK2011398) 江苏省高校优秀中青年骨干教师和校长境外研修计划资助项目
关键词 基因调控网络 验证性因子分析模型 变分逼近 重要性抽样 gene regulatory network (GRN) confirmatory factor analysis (CFA) model variational approximation importance sampling
  • 相关文献

参考文献14

  • 1Friedman N. Inferring cellular networks using probabi- listic graphical models [ J 1. Science, 2004, 303 (5659) :799 - 805.
  • 2Schafer J, Swimmer K. An empirical Bayes approach to inferring large-scale gene association networks [ J ]. Bioinformatics, 2005, 21 (6) :754 - 764.
  • 3Schafer J, SWimmer K. A shrinkage approach to large- scale covariance matrix estimation and implications for functional genomics[J], Statistical Applications in Ge- netics and Molecular Biology, 2005, 4 ( 1 ) : 1175 - 1189.
  • 4Xiong H, Choe Y. Structural systems identification of genetic regulatory networks [J] Bioinformatics, 2008, 24(4) :553 -560.
  • 5Logsdon B A, Mezey J. Gene expression network re- construction by convex feature selection when incorpora- ting genetic perturbations [ J/OL]. PLoS Computational Biology, 2010, 6 ( 12 ). http://www, ploscompbiol.org/article/info% 3 Adoi% 2F10. 1371% 2Fjoumal. pcbi. 1001014.
  • 6Logsdon B A, Hoffman G E, Mezey J G. A variational Bayes algorithm for fast and accurate multiple locus ge- home-wide association analysis [ J/OL ]. BMC Bioin- formatics, 2010, 11. http ://www. biomedcentral, com/ 1471 - 2105/11/58/.
  • 7Carbonetto P, Stephens M. Scalable variational infer- ence for Bayesian variable selection in regression, and its accuracy in genetic association studies[J] Bayesian Analysis, 2012, 7( 1 ) .73 - 107.
  • 8Jordan M I, Ghahramani Z, Jaakkola T S, et al. An in- troduction to variational methods for graphical models[J]. Machine Learning, 1999, 37(2) :183 -233.
  • 9Attias H. Independent factor analysis[J]. Neural Com- putation, 1999, 11 (4) : 803 - 851.
  • 10Beal M J. Variational algorithms for approximate Bayesian inference [ D ]. London: University of Lon- don, 2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部