期刊文献+

基于到达时间差的两步最小二乘定位算法 被引量:7

Two-step least square localization algorithm using time difference of arrival measurement
下载PDF
导出
摘要 为了提高单目标定位的精度,以到达时间差为物理量,提出了一种两步最小二乘定位算法(TSLS).TSLS首先基于普通线性最小二乘估计模型,采用线性纠正最小二乘定位算法(LCLS)获得目标节点位置的估计值;然后计算出目标节点到达不同基站的距离差,并用该距离差来近似实际距离差;最后基于约束总体最小二乘估计模型,利用约束总体最小二乘定位算法(CTLS)对目标节点位置进行二次估计.由于TSLS本质上是通过减少CTLS的矩阵误差来提高CTLS的性能,因此可以看成是一种增强型CTLS算法.仿真分析表明,TSLS算法的总体性能要优于CTLS算法和LCLS算法. In order to improve the localization precision for a single object,a two-step least square localization algorithm (TSLS)is proposed based on the time difference of arrival.The object loca-tion is first estimated by the line correct least square algorithm (LCLS)based on the common least square estimation model.Then the distance difference from the object to different base stations is computed based on the estimated location.Finally,the location is estimated by the constrained total least square algorithm (CTLS)based on the constrained total least square model,in which the dis-tance difference is approximated not by the measurement but by the calculation.Essentially,TSLS improves the performance of CTLS by reducing the errors in the matrix of CTLS,so it can be seen as an enhanced CTLS algorithm.Simulation results show that the performance of the TSLS is better than that of the CTLS and LCLS.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期1157-1161,共5页 Journal of Southeast University:Natural Science Edition
基金 "十二五"国家科技支撑计划资助项目(2012BAH38B05)
关键词 单目标定位 到达时间差 两步最小二乘 定位精度 single object localization time difference of arrival two-step least square localization precision
  • 相关文献

参考文献13

  • 1Liu C, Fang D Y, Yang Z, et al. RDL: a novel ap- proach for passive object localization in WSN based on RSSI [ C ]//IEEE 2012 International Conference on Communications. Ottawa, Canada, 2012:586-590.
  • 2Ma Z H, Ho K C. TOA localization in the presence of random sensor position errors [ C ]//Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing. Prague, Czech Repub- lic, 2011: 2468-2471.
  • 3Qu X M, Xie L H. Source localization by TDOA with random sensor position errors-part II : mobile sensors [ C]//15th International Conference on Information Fu- sion. Singapore, 2012:54-59.
  • 4Jonathan B, Anne F, Pascal L. A space time array pro- cessing for passive geolocalization of radio transmitters [ C]//Proceedings of the 2011 IEEE International Con- ference on Acoustics, Speech, and Signal Processing. Prague, Czech Republic, 2011 : 2596 - 2599.
  • 5Schau H C, Bobinson A Z. Passive source localization employing intersecting spherical surfaces from time of arrival differences [ J ]. IEEE Transactions on Acoustics Speech and Signal Processing, 1987, 35 ( 8 ) : 1223 - 1225.
  • 6Chan Y T, Ho K C. A simple and efficient estimator for hyperbolic location [ J ]. IEEE Transactions on Sig- nal Processing, 1994, 42(8): 1905-1915.
  • 7Huang Y, Elko G W, Mersereau R M. Real time pas- sive source localization: a practical linear correction least squares approach[J]. IEEE Transactions on Speech and Audio Processing, 2001, 9( 8 ) : 943 -956.
  • 8Amir B, Petre S, Li J. Exact and approximate solutions of source localization problems[J]. IEEE Transactions on Signal Processing, 2008, 56(5) : 1770- 1778.
  • 9Weng Y, Xiao W D, Xie L H. Total least squares method for robust source localization in sensor networks using TDOA measurements [J]. International Journal of Distributed Sensor Networks, 2011, 2011 : 172902- 01 - 172902-08.
  • 10Yang K, An J P, Bu X Y, et al. Constrained total least squares location algorithm using time difference of arrival measurements [ J ]. IEEE Transactions on Vehicular Technology, 2010, 59(3) : 1558- 1562.

同被引文献77

引证文献7

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部