期刊文献+

低功耗并行MIMO空间复用检测器的VLSI结构

Low power parallel VLSI architecture for spatially multiplexed MIMO detection
下载PDF
导出
摘要 针对2×2天线配置的多输入多输出无线通信系统,提出了一种新颖的近最大似然多输入多输出检测算法.此算法只对搜索树的第2层节点耗尽搜索,第1层应用区域判定法直接得到假设星座点和反假设点,不需要对每一层搜索树的部分欧几里得距离排序,降低了计算复杂度,而且适合并行处理.依据该算法设计了规则的、流水线型的超大规模集成电路,可以配置并行检测核的数目,从而可灵活地控制吞吐率.在40nm的工艺下,约束工作电压为1.08V,设定时钟频率为156MHz,版图实现可以达到312Mbit/s的吞吐量和23mW的功耗,处理延迟仅为0.051ns. This paper proposes a novel maximum likelihood-like detection algorithm for the 2×2 MIMO wireless communication system. Only the second layer in the search tree needs to be verified exhaustively, and then the area determination strategy is applied to the first layer to figure out the hypothesis node and counter-hypothesis nodes without sorting the partial Euclidean distance for each layer, which reduces the complexity significantly and leads to parallel implementation. The regular VLSI architecture is designed according to the detection algorithm, and flexible parallelism can well control the throughput for versatile applications. The VLSI architecture is implemented with 40 nm technology and constrained with the voltage of 1.08 V and the clock frequency of 156 MHz. The detector achieves 312 Mbit/s throughput with the powe/" dissipation of 23 mW and the latency of 0. 051 ns .
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第6期25-31,84,共8页 Journal of Xidian University
基金 国家自然科学基金资助项目(60971111) 国家重点基础研究发展计划(973)资助项目(2010CB328300)
关键词 球形检测 多输入多输出空间复用 软输出 超大规模集成电路 sphere detection spatially multiplexed multiple-input multiple-output soft output very largescale integration
  • 相关文献

参考文献15

  • 1Hochwald B M, Ten Brink S. Achieving Near-capacity on a Multiple-antenna Channel [J]. IEEE Transeations on Communications, 2003, 51(3): 389-399.
  • 2任光亮,段昕利,郁光辉,杨丽花.MIMO空间复用系统中的一种新的低复杂度球形检测算法[J].西安电子科技大学学报,2011,38(2):13-17. 被引量:7
  • 3Studer C, Fateh S, Seethaler D. ASIC Implementation of Soft-Input Soft-Output MIMO Detection using MMSE Parallel Interference Cancellationl-J]. IEEE Journal of Solid-State Circuits, 2011, 46(7) : 1754-1765.
  • 4Burg A, Borgmann M, Wenk M, et al. VLSI Implementation of MIMO Detection Using the Sphere Decoding Algorithm [J] IEEE Journal of Solid-State Circuits, 2005, 40(7) : 1566-1577.
  • 5Mondal S, Eltawil A, Shen C A, et al. Design and Implementation of a Sort-Free K-Best Sphere Decoder [J]. IEEE Transcations on VLSI Systems, 2010, 18(10) : 1497-1501.
  • 6Shen C A, Eltawil A M. A Radius Adaptive K-Best Decoder With Early Termination: Algorithm and VLSI Architecture D]. IEEE Transcations on Circuits and Systems I: Regular Papers, 2010, 57(9): 2476-2486.
  • 7Studer C, Burg A, Bolcskei H. Soft-Output Sphere Decoding: Algorithms and VLSI ImplementationJ. IEEE Journal on Selected Areas in Communications, 2008, 26(2):290-300.
  • 8Liao C H, Wang T P, Chiueh T D. :A 74.8 mw Soft-Output Detector IC for 8x8 Spatial-Multiplexing MIMO Communications [J]. IEEE Journal on Solid-State Circuits, 2010, 45(2) : 411-421.
  • 9Studer C, Blosch P, Friedli P, et al. Matrix Decomposition Architecture for MIMO Systems: Design and Implementation Trade-Offs [C] //Conference Record of the 41st Asilomar Conference on Signals, Systems and Computers. Piscataway: IEEE, 2007:1986-1990.
  • 10Damen M O, Gamal E, Caire G. On Maximum-Likelihood Detection and the Search for the Closest Lattice Point f-J]. IEEE Transcations on Information Theory, 2003, 49(10): 2389-2402.

二级参考文献12

  • 1苏昕,孙永军,易克初.一种结合ML检测的高性能V-BLAST系统[J].西安电子科技大学学报,2005,32(3):344-347. 被引量:6
  • 2Kawai H, Higuchi K, Maeda N, et al. Adaptive Control of Surviving Symbol Replica Candidates in QRM-MLD for OFDM MIMO Multiplexing [ J]. IEEE Journal on Selected Areas in Communications, 2006, 24(6): 1130-1140.
  • 3Shim B, Kang I. Sphere Decoding With a Probabilistic Tree Pruning [ J]. IEEE Trans on Signal Processing, 2008, 56(10) : 4867-4878.
  • 4Cheng Bo, Liu Wei, Yang Zongkai, et al. A New Method for Initial Radius Selection of Sphere Decoding[ C]//IEEE Symposium on Computers and Communications: 1-4. Portugal: IEEE, 2007: 19-24.
  • 5Hung C Y, Sang T H. A Sphere Decoding Algorithm for MIMO Channels [ C]//IEEE International Symposium on Signal Processing and Information Technology. Canada: IEEE, 2006: 502-506.
  • 6Shim B, Kang I. Adius-adaptive Sphere Decoding Via Probabilistic Tree Pruning[ C]//IEEE 8th Workshop on Signal Processing Advances in Wireless Communications. Finland: IEEE, 2007: 1-5.
  • 7Shariat-Yazdi R, Kwasniewski T. Low Complexity Sphere Decoding Algorithms[ C]//IEEE International Symposium on Wireless Communication Systems. Iceland: IEEE, 2008:438-442.
  • 8Chiang H L, Chen S G. An Efficient Hybrid Sphere Decoding Algorithm for MIMO Systems[ C]//IEEE 10th International Symposium on Spread Spectrum Techniques and Applications. Italy: IEEE, 2008: 339-343.
  • 9Zheng Jianping, Bai Baoming, Wang Xinmei. Combining Sphere Decoding with M-Algorithm[ C]//IEEE~Information Theory Workshop. Chengdu: IEEE, 2006:175-178.
  • 10Azzam L, Ayanoglu E. An Efficient Tree Search for Reduced Complexity Sphere Decoding [ C]//IEEE Global Telecommunications Conference. New Orleans: IEEE, 2008: 1-4.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部