期刊文献+

基于多分离部件稀疏编码的人脸图像分析

Face Image Analysis Based on Multiple Separated Component Sparse Coding
下载PDF
导出
摘要 考虑到不同部件(眼睛,嘴等)对人脸分析的贡献差别,提出基于多部件稀疏编码的人脸图像分析方法.首先,选取对人脸(表情)分析影响较大的几个人脸部件,然后,利用多视角稀疏编码方法学习各部件的字典,并计算相应的稀疏编码,最后,将稀疏编码输入分类器(支持向量机和最小均方误差)进行判决.分别在数据库JAFFE和Yale上进行人脸(表情)识别及有遮挡的人脸(表情)识别实验.实验结果表明,基于多部件稀疏编码的人脸分析能较好地调节各部件的权重,优于各单一部件和简单的多部件融合方法的性能. Considering the different contributions of different facial components to face analysis, e.g. eyes, mouth etc. , a face analysis based on multi-component sparse coding is proposed. Firstly, some facial components which play important role to face analysis are selected. Then, the dictionaries of multiple components are learnt by using muhi-view sparse coding algorithm, and the sparse codes of each face image are computed based on the dictionary. The final decision is made through pooling the sparse codes into support vector machines and least squares classifiers. Face analysis experiments include face recognition, facial expression recognition, face recognition with occlusion, and facial expression recognition with occlusion. The experimental results show that the proposed method based on multi-component sparse coding learns optimal weights of different facial components and outperforms single facial component method and simple multi-component fusion method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第11期1073-1078,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61271407,61301242) 中央高校基本科研业务费专项资金项目(No.13CX02096A) 山东省自然科学基金青年基金项目(No.ZR2011FQ016) 中国石油大学(华东)研究生创新工程项目(No.CX2013057)资助
关键词 人脸部件 人脸分析 稀疏编码 人脸识别 表情识别 Face Component, Face Analysis, Sparse Coding, Face Recognition, Facial Expression Recognition
  • 相关文献

参考文献14

  • 1Zhao W, Chellappa R, Phillips P J, et al. Face Recognition : A Literature Survey. ACM Computing Surveys, 2003, 35(4) : 399-458.
  • 2Fasel B, Luettin J. Automatic Facial Expression Analysis: A Survey. Pattern Recognition, 2003, 36( 1 ) : 259-275.
  • 3Xiang Yah, Su Guangda. Multi-parts and Multi-feature Fusion in Face Verification// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008 : 1-6.
  • 4Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattem Analysis and Machine Intelligence, 2009, 31 (2) : 210-227.
  • 5Zhang Qiang, Li Baoxin. Discriminative K-SVD for Dictionary Learning in Face Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010:2691-2698.
  • 6Liu Weifeng, Song Caifeng, Wang Yanjiang. Facial Expression Recognition Based on Discriminative Dictionary Learning// Proc of the 21st International Conference on Pattern Recognition. Tsukuba, Japan, 2012 : 1839-1842.
  • 7Cao Zhimin, Yin Qi, Tang Xiaoou, et al. Face Recognition with Learning-Based Descriptor//Proc of the IEEE Conference on Com- puter Vision and Pattern Recognition. San Francisco, USA, 2010: 2707-2714.
  • 8Cotter S F. Weighted Voting of Sparse Representation Classifiers for Facieal Expression Recognition/! Proc of the 18th European Signal Processing Conference. Aalborg, Denmark, 2010 : 1164-1168.
  • 9胡正平,宋淑芬.基于全局和分离部件融合的双L_1稀疏表示人脸图像识别算法[J].模式识别与人工智能,2012,25(2):256-261. 被引量:8
  • 10Jia Yangqing, Salzmann M, Darrell T. Factorized Latent Spaces with Structured Sparsity//Proc of the Advances in Neural Infor- mation Processing Systems. Vancouver, Canada, 2010:952-990.

二级参考文献12

  • 1Wright J,Yang A Y,Ganesh A. Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,(02):210-227.doi:10.1109/TPAMI.2008.79.
  • 2Huang Junzhou,Huang Xiaolei,Metaxas D. Simultaneous Image Transformation and Sparse Representation Recovery[A].Anchorage,USA,2008.1-8.
  • 3Cheng Ping;Liu Haitian;Zhao Jiaqun.A Novel Sparse Representation Algorithm Based on Local Competitions[A]北京,2010798-801.
  • 4He Ran,Hu Baogang,Zheng Weishi. Two-Stage Sparse Representation for Robust Recognition on Large-Scale Database[A].Atlanta,USA,2010.475-480.
  • 5Majumdar A,Ward R K. Fast Group Sparse Classification[J].Canadian Journal of Electrical and Computer Engineering,2009,(04):136-144.
  • 6Yang Meng,Zhang Lei. Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary[A].Heraklion,Greece,2010.448-461.
  • 7Li Chunguang,Guo Jun,Zhang Honggang. Local Sparse Representation Based Classification[A].Istanbul,Turkey,2010.649-652.
  • 8Zhang Nan;Yang Jian.K Nearest Neighbor Based Local Sparse Representation Classifier[A]重庆,2010400-404.
  • 9Huang Di;Ouji K;Ardabilian M.3D Face Recognition Based on Local Shape Patterns and Sparse Representation Classifier[A]台湾台北,2011206-216.
  • 10Cotter S F. Weighted Voting of Sparse Representation Classifiers for Facial Expression Recognition[A].Aalborg,Denmark,2010.1164-1168.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部