期刊文献+

单摆混沌现象的研究 被引量:5

Researches of chaos phenomena due to simple pendulum
下载PDF
导出
摘要 利用MATLAB软件强大的数值计算功能,使用龙格库塔法严格求解无阻尼单摆和有阻尼单摆的运动方程,研究单摆摆长、阻尼系数和初始摆角对单摆运动的影响.研究结果表明:单摆的周期与初始摆角有关,单摆周期随初始摆角的增大而增大;当两种单摆的参数取值处于某些范围时,均能出现混沌现象;阻尼单摆在正阻尼条件下演化出随机吸引子,在负阻尼条件下演化出随机排斥子.通过计算不同参数值的单摆方程,发现单摆的运动对初始摆角、阻尼系数有很强的依赖性.最后提出了一种衡量混沌系统敏感性的量化指标——敏感系数,计算结果表明,初始摆角、单摆摆长、阻尼系数均能影响单摆的敏感系数. Impact of length, damping coefficient and initial swing angle of simple pendulum on movement were studied by strictly solving equations of motion of the undamped simple pendulum and the damped pendulum respectively, which was supported by MATLAB software and Runge-Kutta method. The results showed that the initial swing angle could enhance the period of simple pendulum. Appropriate values of parameters could lead to chaos in two kinds of simple pendulums. For the positive damping case, random attractor appeared and for the negative damping case, random repeller appeared. Solving the movement equations with different parameter values, we found that movement depended on the initial swing angle and damping coefficient strongly. Finally, a quantifiable indicators weighing the degree of chaotic system's sensitivity was put forward, named sensitivity coefficient. Computation indicated that length, damping coefficient and initial swing angle had an effect on the sensitivity coefficient of simple pendulum.
出处 《湖北大学学报(自然科学版)》 CAS 2013年第4期513-517,共5页 Journal of Hubei University:Natural Science
基金 理论物理国家重点实验室开放课题(Y3KF321CJ1)资助
关键词 MATLAB 单摆 龙格库塔法 混沌 吸引子 敏感性 MATLAB simple pendulum Runge-Kutta method chaos attractors sensitivity
  • 相关文献

参考文献18

  • 1王洪海,傅廷亮,李菊芳.分形和混沌系统的仿真[J].吉首大学学报(自然科学版),2012,33(4):45-48. 被引量:1
  • 2Kidd R B, Fogg S L. A simple formula for the large-angle pendulum period[J]. Phys Teach,2002,40..81.
  • 3Blackburn J A, Zhou J Y, Vik S, et al. Experimental study of chaos in a driven pendulum[J]. Phys D.- Nonlinear Phenomena, 1987,26 (1) : 385-395.
  • 4Ott E. Strange attractors and chaotic motions of dynamical systems[J]. Rev Mod Phys, 1981,53(4): 655.
  • 5Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[J]. AIAA, 1981,1259 : 1981.
  • 6Lorenz E N. Deterministic nonperiodic flow[J]. J Atmos Sci, 1963,20(2): 130-141.
  • 7Humieres D, Beasley M R, Huberman B A, et al. Chaotic states and routes to chaos in the forced pendulum[J]. Phys Rev A, 1982,26 (6) : 3483.
  • 8Kolyada S F. Li-Yorke sensitivity and other concepts of chaos[J]. Ukr Mat J,2004,56(8):1242-1257.
  • 9Qing X Y, Pei D. Comment on approximation for a large-angle simple pendulum period[J]. Eur J Phys, 2009,30 (5) :L79.
  • 10Fulcher I. P, Davis B F. Theoretical and experimental study of the motion of the simple pendulum[J]. Am J Phys, 1976,44(1) ..51-55.

二级参考文献8

共引文献13

同被引文献42

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部