期刊文献+

基于节点权重和DS证据理论的WSN数据融合 被引量:2

Data Fusion in Wireless Sensor Network Based on Node Weight and DS Evidence Theory
下载PDF
导出
摘要 为了减少无线传感器网络中传感器节点目标检测和识别的时间开销和数据冲突,研究了一种基于节点权重和DS证据融合理论的数据融合方法;首先通过计算各目标的总体信任度选择焦元从而减少焦元数目,在此基础上,通过计算各传感器节点采集数据即证据的总体信任度过滤总体信任度较低的节点以减少节点数目,然后通过计算各证据的信息熵来确定各证据权重,通过计算证据被其它证据支持的支持度来获得证据关系权重;最后将计算得到的证据权重和证据关系权重进行加权获得最终证据权重;仿真实验表明:文中方法能较为精确地进行目标识别,识别率高达100%,与其它方法相比,具有计算时间少和识别精度高的优点,具有很强的可行性。 In order to reduce the time consumption and data collision of goal recognition in wireless sensor network, a data fusion method based on node weight and DS evidence theory was researched. Firstly, the main trust of every goal was computed to reduce the numbers of goals, then the main trust of every sensor node was computed to filter the nodes which has the lower trust value, and after that, the informa tion entropy for evidence was computed to get the evidence weight, and the evidence relation weight was computed, Finally, the final evi dence weight was obtained by weighting evidence weight and evidence relation weight. The simulation results show that: the proposed meth od is accurate in goal recognition, the recognition rate is as high as 100%, and compared with other methods, it has the advantages of less time consumption and high reeolznition accuracy. So it is proved as strong feasibility.
出处 《计算机测量与控制》 北大核心 2013年第11期3117-3119,共3页 Computer Measurement &Control
基金 省部共建实验室基地项目开放课题(9011311) 江苏第二师范学院十二五规划课题(Jsie2012yb04 Jsie2011qz05)
关键词 数据融合 节点权重 证据理论 信息熵 data fusion node weight evidence theory information entorpy
  • 相关文献

参考文献10

二级参考文献86

  • 1邢清华,雷英杰,刘付显.一种按比例分配冲突度的证据推理组合规则[J].控制与决策,2004,19(12):1387-1390. 被引量:42
  • 2宿陆,李全龙,徐晓飞,过晓春.基于D-S证据理论的传感器网络数据融合算法[J].小型微型计算机系统,2006,27(7):1321-1325. 被引量:22
  • 3何友,彭应宁,陆大.多传感器数据融合模型综述[J].清华大学学报(自然科学版),1996,36(9):14-20. 被引量:85
  • 4林志贵,徐立中,周金陵.基于修改模型的冲突证据组合方法[J].上海交通大学学报,2006,40(11):1964-1970. 被引量:19
  • 5费业泰.误差理论与数据处理[M].5版.北京:机械工业出版社,2008:43-49.
  • 6LIAO W H, KAO Yu-eheng, FAN C M.. Data aggregation in wireless sensor networks using ant colony algorithm[J]. Journal of Network and Computer Applications,2008,31 (4) :387-401.
  • 7FAN Kai-wei,LIU Sha,SINHA P. Structure-free data aggregation in sensor networks[J]. IEEE Trans on Mobile Computing, 2007,6 (8) :929-942.
  • 8FAN Kai-wei, LIU Sha,SINHA P. Dynamic forwarding over tree-on- DAG for scalable data aggregation in sensor networks [J]. IEEE Trans on Mobile Computing,2008,6(10) :1271-1284.
  • 9KALPAKIS K, DASGUPTA K, NAMJOSHI P. Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks[J]. Computer Networks,2003,42(6):697-716.
  • 10HUA Cun-qing, YUM T S Peter. Optimal routing and data aggregation for maximizing lifetime of wireless sensor networks [J]. IEEE/ACM Trans on Networking,2008,16(4) :892-903.

共引文献70

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部