摘要
本文用多层感知器 (MLP)与误差反向传播算法 (errorback propagationalgorithm)构造训练人工神经网络 ,提出了新的误差反向传播改进算法。试验结果表明 ,改进的BP算法收敛速度较之常规BP算法明显加快 ,因而在工业现场的超声检测领域有广阔应用前景。
The model of multilayer perceptron (MLP) and back-propagation (BP) training algorithm in artificial neural network are employed in this paper. New ideas are proposed to improve learning algorithm in aspects of learning rate for BP training. Experiment results are also presented to demonstrate the effect of improvement, which has a widely applied future for ultrasonic testing in industry.
出处
《声学技术》
CSCD
2000年第4期179-181,共3页
Technical Acoustics
基金
国家自然科学基金资助课题
关键词
人工神经网络
学习算法
超声检测
artificial neural network
learning algorithm
improvement
ultrasonic testing