摘要
对近几年用几何代数方法建立的规范场可分解理论进行了详细的评述 ,并给出了应用它研究欧拉示性数的新结果 .简述了一些应用领域 .从目前国际研究的进展来看 ,规范势可分解理论也将为研究规范场静态解和夸克禁闭提供新的途径 .
The recent study of decomposition of gauge fields by means of methods of the geometric algebra was reviewed in detail. The new results in the study of the Euler characteristic by using the decomposition of gauge fields were described. On the other hand, some recent application fields of the decomposition of gauge fields and topological current theory were introduced. The new developments of the investigation in the area have also shown that the decomposition of gauge fields will provide a new way for the study between the stable solution of the gauge field and the confinements phenomena in strong interaction.
出处
《原子核物理评论》
CAS
CSCD
2000年第4期201-209,共9页
Nuclear Physics Review
基金
兰州重离子加速器国家实验室原子核理论中心
中国科学院近代物理研究所所长基金资助
中科院"百人计划"资助&&
关键词
规范场
几何代数
规范势
可分解理论
gauge field
geometry algebra
Euler characteristic
topological curre(