期刊文献+

倒向随机微分方程的均值型Kneser定理

MEAN-TYPE KNESER THEOREM FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATION
下载PDF
导出
摘要 本文研究了当倒向随机微分方程的解不唯一时,其解集的结构问题.利用正向与倒向方程相结合的构造性方法,建立了关于倒向随机微分方程和带下障碍的反射倒向随机微分方程的均值型Kneser定理,推广了Jia-Peng[6]的结果. In this paper, we study the structure of solutions set for backward stochastic differential equation (BSDE) in the absence of uniqueness. By using of the construction method which combines a forward stochastic differential equation and a backward one, the mean-type Kneser theorems are established for BSDE and reflected backward stochastic differential equation with a lower barrier respectively, which generalize the results of Jia-Peng
作者 石学军 江龙
出处 《数学杂志》 CSCD 北大核心 2013年第6期1101-1105,共5页 Journal of Mathematics
基金 国家自然科学基金(10971220) 全国优秀博士学位论文作者专项基金(200919) 中央高校基本科研业务费专项基金(2010LKSX04) 江苏省2013年度普通高校研究生科研创新计划项目(CXZZ1 0921)
关键词 倒向随机微分方程 反射倒向随机微分方程 均值型Kneser定理 backward stochastic differential equation reflected backward stochastic differential equation mean-type Kneser theorem
  • 相关文献

参考文献8

  • 1Pardoux E,Peng S.Adapted solution of a backward stochastic differential equation[J].Systems Control Letters,1990,14:55-61.
  • 2E1 Karoui N,Kapoudjian C,Pardoux E,Peng S,Quenez M C.Reflected solutions of Backward SDE's and related obstacle problems for PDE's[J].Annals of Probability,1997,25:702-737.
  • 3Lepeltier J P,San Martin J.Backward stochastic differential equations with continuous coefficient[J].Statistics & Probability Letters,1997,32:425-430.
  • 4Matoussi A.Reflected solutions of backward stochastic differential equations with continuous coefficient[J].Statistics & Probability Letters,1997,34:347-354.
  • 5Kneser H.Uber die losunge eines systems gewohnlicher differential-gleichungen das der Lips-chitzschen bedingung nicht genugt[J].S-B.Preuss Akad.Wiss.Phys.Math.,1923,KI:171-174.
  • 6Jia G,Peng S.On the set of solutions of a BSDE with continuous coefficient[J].C.R.Acad.Sci.Paris,2007,344:395-397.
  • 7Jia G,Xu M.Construction and uniqueness for reflected BSDE under linear increasing condition[EB/DB].arXiv:0801.3718v1[math.SG],2008.
  • 8Shi Y,Zhu Q.A Kneser-Type theorem for backward doubly stochastic differential equation[J].Discrete and Continuous Dynamical Systems-Series,2010,14(4):1565-1579.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部