摘要
本文研究了当倒向随机微分方程的解不唯一时,其解集的结构问题.利用正向与倒向方程相结合的构造性方法,建立了关于倒向随机微分方程和带下障碍的反射倒向随机微分方程的均值型Kneser定理,推广了Jia-Peng[6]的结果.
In this paper, we study the structure of solutions set for backward stochastic differential equation (BSDE) in the absence of uniqueness. By using of the construction method which combines a forward stochastic differential equation and a backward one, the mean-type Kneser theorems are established for BSDE and reflected backward stochastic differential equation with a lower barrier respectively, which generalize the results of Jia-Peng
出处
《数学杂志》
CSCD
北大核心
2013年第6期1101-1105,共5页
Journal of Mathematics
基金
国家自然科学基金(10971220)
全国优秀博士学位论文作者专项基金(200919)
中央高校基本科研业务费专项基金(2010LKSX04)
江苏省2013年度普通高校研究生科研创新计划项目(CXZZ1 0921)
关键词
倒向随机微分方程
反射倒向随机微分方程
均值型Kneser定理
backward stochastic differential equation
reflected backward stochastic differential equation
mean-type Kneser theorem