期刊文献+

基于最优相关滤波的光照容限二维子空间人脸识别

Face Recognition in Illumination Tolerant Two-dimensional Subspace Based on Optimum Correlation Filter
下载PDF
导出
摘要 针对光照容限人脸识别问题,提出了基于最优相关滤波的光照容限二维子空间人脸识别方法。通过采用特定类2DPCA重构人脸图像,从中生成一对相关性过滤器。利用最优投影图像相关性过滤器将测试人脸图像投影到二维子空间,并利用重构相关性过滤器重构图像。根据预先设定的光照容限阈值进行人脸分类。在YaleB和PIE两大人脸数据库上对所提出方法的性能进行了评估,相比其他现存的相关性过滤器,所设计的滤波器更加优越。 For the illumination tolerant face recognition problem, illumination tolerant two-dimensional subspace method based on optimum correlation filter is proposed. A couple of correlation filters are generated by using 2D- PCA with class specified to reconstruct face images. The optimal projection image correlation filter is used to project testing images to two-dimensional subspace. Refactoring correlation filter is used to reconstruct images. Face classi- fication is finished by preset lighting tolerance threshold. The performance of proposed strategy is evaluated on YaleB and PIE face databases. Proposed technique has better performance comparing with other existing correlation filters.
出处 《科学技术与工程》 北大核心 2013年第31期9219-9226,共8页 Science Technology and Engineering
基金 河南省重点科技攻关项目(112102210221) 河南省教育厅自然科学研究计划项目(2012A520055)资助
关键词 人脸识别 光照容限 二维子空间 相关性滤波器 最优投影图像 重构图像 face recognition illumination tolerant two-dimensional subspace correlation filteroptima! Projection image refactoring images
  • 相关文献

参考文献15

二级参考文献73

  • 1山世光,高文,唱轶钲,曹波,陈熙霖.人脸识别中的“误配准灾难”问题研究[J].计算机学报,2005,28(5):782-791. 被引量:18
  • 2胡永刚,吴翊,王洪志,卜江.高维数据降维的DCT变换[J].计算机工程与应用,2006,42(32):21-23. 被引量:9
  • 3Liu Ke, Cheng Yongqing, Yang Jingyu, et al. Algebraic Feature Extraction for Image Recognition Based on an Optimal Discriminant Criterion. Pattern Recognition, 1993, 26(6) : 903 -911.
  • 4Yang Jian, Zhang D, Frangi A F, et al. Two Dimensional PCA:A New Approach to Appearance Based Face Representation and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131 -137.
  • 5Lee D D, Seung H S. Learning the Parts of Objects with Non-Negative Matrix Factorization. Nature, 1999, 401:788 -791.
  • 6Li S Z, Hou Xinwen, Zhang Hongjiang, et al. Learning Spatially Localized, Parts-Based Representation//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai Marriott, USA, 2001 ,Ⅰ: 207 -212.
  • 7Hoyer P O. Non-Negative Sparse Coding//Proc of the IEEE Workshop on Neural Networks for Signal Processing. Martigny, Switzerland, 2002 : 557 - 565.
  • 8Olshausen B A, Field D J. Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature, 1996, 381:607-609.
  • 9Liu Weixiang, Zheng Nanning, Lu Xiaofeng. Non-Negative Matrix Factorization for Visual Coding // Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Hongkong, China, 2003, Ⅲ : 293 - 296.
  • 10Zafeiriou S, Tefas A, Pitas I. Discriminant NMF Faces for Frontal Face Verification//Proc of the IEEE International Workshop on Machine Learning for Signal Processing. Mystic, USA, 2005 : 355 - 359.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部