期刊文献+

Growth and in situ high-pressure reflection high energy electron difraction monitoring of oxide thin films 被引量:1

Growth and in situ high-pressure reflection high energy electron difraction monitoring of oxide thin films
原文传递
导出
摘要 Interface and surface physics is an important sub-discipline within condensed matter physics in recent decades. Novel concepts like oxide-electronic device are prompted, and their performance and lifetime are highly dependent on the flatness and abruptness of the layer surfaces and interfaces. Reflection high-energy electron diffraction (RHEED), which is extremely sensitive to surface morphology, has proven to be a versatile technique for the growth study of oxide thin films. A differential pumping unit enables an implementation of RHEED to pulsed laser deposition (PLD) systems, ensuring an in situ monitoring of the film growth process in a conventional PLD working oxygen pressure up to 30 Pa. By optimizing the deposition conditions and analyzing the RHEED intensity oscillations, layer-by-layer growth mode can be attained. Thus atomic control of the film surface and unit-cell control of the film thickness become reality. This may lead to an advanced miniaturization in the oxide electronics, and more importantly the discovery of a range of emergent physical properties at the interfaces. Herein we will briefly introduce the principle of high-pressure RHEED and summarize our main results relevant to the effort toward this objective, including the growth and characterization of twinned Laz/3Caj/3MnO3 thin films and ReTiO〉6/2 (Re = La, Nd; ~5 = 0 - 1) AnBnO3n+2 structures, on YSZ-buffered 'Silicon on Insulator' and LaA103 substrates, respectively, as well as the study of the initial structure and growth dynamics of YBazCu307-6 thin films on SrTiO3 substrate. Presently we have realized in situ monitoring and growth mode control during oxide thin film deposition process. 接口和表面物理是在在最近的十年的压缩的事物理以内的一个重要学科的分支。象氧化物电子的设备一样的新奇概念被推动,并且他们的性能和一生高度依赖于层表面和接口的平坦和突然。思考高精力的电子衍射(RHEED ) 对表面形态学极其敏感,证明了是为氧化物的生长学习的一种万用的技术薄电影。一个微分抽单位启用 RHEED 的实现,保证搏动的激光免职(PLD ) 系统一在里面在工作的常规 PLD 电影生长过程监视的 situ 氧压力直到 30 Pa。由优化免职条件并且分析 RHEED 紧张摆动, layer-by-layer 生长模式能被达到。电影表面的因此原子的控制和电影厚度的单位房间控制成为现实。这可以重要地在氧化物电子学,和更多导致先进小型化在接口的突现的物理性质的一个范围的发现。此处,我们将简短介绍高压的 RHEED 的原则并且向这个目的总结我们与努力相关的主要结果,包括孪生的 La2/3Ca1/3MnO3 薄电影和 ReTiO3+/2 的生长和描述(Re = La, Nd;= 0 1 ) A n B n O3n+2 结构在绝缘体和 LaAlO3 底层上的缓冲 YSZ 的硅上,分别地,以及起始的结构的学习和 YBa2Cu3O7 的生长动力学变瘦 SrTiO3 上的电影底层。目前,我们在 situ 在氧化物期间监视和生长模式控制认识到薄电影免职过程。
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第12期2312-2326,共15页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.10974229 and 11174342)
关键词 RHEED oxide thin film pulsed laser deposition INTERFACE 反射高能电子衍射 氧化物薄膜 生长过程 原位监测 高压 RHEED 可编程逻辑器件 表面物理学
  • 相关文献

参考文献1

二级参考文献19

  • 1Liu Z, Wang X L, Wang J X, Hu G X, Guo L C and Li J M 2007 Chin. Phys. 16 1467
  • 2Xiong C B, Jiang F Y, Fang W Q, Wang L and Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese)
  • 3Witana~hchi S, Patel S, Kwok H S and Shaw D T 1989 Appl. Phys. Lett. 54 578
  • 4Matthee Th, Wecker J, Behner H, Friedl G, Eibl O and Samwer K 1992 Appl. Phys. Lett. 61 1240
  • 5Zhang W, Boyd W, Elliot M and Harkerand W H 1996 Appl. Phys. Lett. 69 3929
  • 6Srinivasan G, Suresh Babu V and Seehra M S 1995 Appl. Phys. Lett. 67 2090
  • 7Meng X F, Pierce F S, Wong K M, Amos R S, Xu C H, Deaver Jr B S and Pooh S J 1991 IEEE T. Magn. 27 1638
  • 8Sanchez F, Varela M, Queralt X, Aguiar R and Morenza J L 1992 Appl. Phys. Lett. 61 2228
  • 9Powell A R, Iyer S S and LeGoues F K 1994 Appl. Phys. Lett. 64 1856
  • 10Legrand B, Agache V, Melin T, Nys J P, Senez V and Stievenard D 2002 J. Appl. Phys. 91 106

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部