期刊文献+

空间L_2~2(R_+~2;e^(-x-y)x~αy~β)中的函数用傅立叶——拉盖尔级数部分和逼近的某些问题(英文)

Certain problems of the approximation of functions by Fourier-Laguerre sums in the space L_2~2(R_+~2;e^(-x-y)x~αy~β)
下载PDF
导出
摘要 本文利用L22的一个平移算子fh定义了差分Δkh(f)和广义连续模Ωk(f;δ),根据Hermite多项式的性质引入了一个二阶微分算子D,由此来定义函数类Wr(D)和KH(α).借助于文献[1-7]中的一些结论及研究方法可以证明级数∑∞i=0∑∞j=0c ij(f)((Γ(i+α+1)Γ(j+β+1))/(i!j))~(1/2)绝对收敛,同时得到supf∈Wr(D)En(f)和limn→∞En(f)nr的精确值. In this paper, using the shift operator fh in L22, the difference operator △kh (f) and the generalized modulus of continuity Ωk (f;δ) are defined.
作者 耿爱成
出处 《沈阳工程学院学报(自然科学版)》 2013年第4期378-380,共3页 Journal of Shenyang Institute of Engineering:Natural Science
关键词 差分 广义连续模 最近逼近 绝对收敛 difference generalized modulus of continuity best approximation absolutely convergent
  • 相关文献

参考文献7

  • 1Abilov V A. On the best approximation of func-tions of many variables by algebraic polyn-omiaisE J]. EAST JOURNAL ON APPROXIMATIONS, 1996,2 ( 4 ) :477 - 497.
  • 2Abilov V A, Abilov M V. Approximation of Functions in the Space L2 ( RN ; e - I x ~ ) ( in Russian ) [ J ]. Mathematical Notes, 1995,57( 1 ) :3 - 19.
  • 3Abilov V A,Abilov M V. Certain problems of the approxi- mation of functions in two variables by Fourier-Hermite sums in the space L2 (R2 ;e-xZ-Y2) [ j]. Analysis Mathemati- ca,2006,32 : 163 - 171.
  • 4Geng Aicheng, Zhao zhenyu, Zhao Chunyuan. Estimates of the Bounds of Best Approximation and Kolmogorov n-width of a Special Classes of Functions in L2 ( R2 ; e-x2-y2 ) E J]. Journal of Shenyang Institute of Engineering: Natural Sci- ence, 2009,5 (2) : 190 - 192.
  • 5Geng Aicheng, Approximation of Functions in the space L2 ( R2 ;e _x2_y2 ) E J]. Journal of Shenyang Institute of Engineer- ing: Natural Science,2012,8 (4) .378 - 380.
  • 6Abilov V A, Abilov M V, Kerimov M K. Some problems concerning the convergence of double Fourier-Laguerre-Her- mite series (in Russian) [J ]. Computational Mathematics and Mathematical Physics,2004,44 (2) :213 - 230.
  • 7Abilov V A, Kerimov M K. Some problems of expansion of functions in double Fourier-Hermite-Jacobi series (in Rus- sian) E J 1. Computational Mathematics and Mathematical Physics ,2004,44 (9) : 1596 - 1607.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部