期刊文献+

改进的LFP算法在白细胞图像纹理特征提取与识别中的应用 被引量:4

Improved LFP Algorithm on Leukocyte Image Texture Feature Extraction and Recognition
下载PDF
导出
摘要 研究了白细胞图像特征提取和分类识别方法,以提高白细胞图像的正确识别率.针对细胞纹理特征的提取,采用改进的局部模糊模式提取白细胞图像的纹理特征,通过对局部二值模式中阈值参量的模糊化,建立了基于局部模糊模式的纹理特征提取算法.算法中引入"统一模式"方法,使提取的特征维度降低为10,且具有旋转不变性.通过有向无环图方法建立支持向量机组合分类器,对CellAtlas的100幅白细胞图像进行了分类识别的实验.实验结果表明:改进的局部模糊模式算法精简了纹理特征数量,起到了"去伪存真"的作用,在含有噪音的白细胞图像分类识别中表现出优良的性能,使提取的特征具有更好的"鲁棒性",并且具有运行时间短、效率高的特点,白细胞的正确识别率达到了93%.改进的支持向量机分类器表现出高效的分类效果,对小样本分析具有更好的特性. Leukocyte image feature extraction and classification are studied to improve the correct recognition rate of leukocyte image. For cell texture feature extraction, leukocyte image texture features are extracted by using the improved local fuzzy pattern,and the texture feature extraction method based on local fussy pattern (LFP) was proposed by making the threshold parameter fuzzy in local binary pattern (LBP). The algorithm introduces in uniform pattern to make the extracted feature dimension decrease to 10 with rotation invariance. The classification of 100 CellAtlas’s white blood cells images was tested with a support vector machine combination classifier established by a directed acyclic graph method. Experimental results show that: the improved local fuzzy pattern algorithm simplifies texture feature quantity to realize "discard the false and retain the true".The leukocyte image classification and recognition with noise exhibits excellent performance, so that the extracted features have better Robustness. And it has a short running time, high efficiency, leukocyte correct recognition rate is up to 93%. Improved support vector machine classifier shows efficient classification effect,and has better characteristics to small sample analysis.
出处 《光子学报》 EI CAS CSCD 北大核心 2013年第11期1375-1380,共6页 Acta Photonica Sinica
基金 吉林省科技厅基金(No.20121006)资助
关键词 白细胞分类 纹理特征提取 局部模糊模式 统一模式 支持向量机 Leukocyte classification Texture feature extraction Uniform pattern Local fuzzy
  • 相关文献

参考文献2

二级参考文献26

  • 1杜培军,方涛,唐宏,陈雍业.高光谱遥感信息中的特征提取与应用研究(英文)[J].光子学报,2005,34(2):293-298. 被引量:38
  • 2胡泽骏,杨惠根,艾勇,黄德宏,胡红桥,刘瑞源,田口真,陈卓天,綦欣,温艳波,刘嵘,王晶.日侧极光卵的可见光多波段观测特征——中国北极黄河站首次极光观测初步分析[J].极地研究,2005,17(2):107-114. 被引量:18
  • 3熊宇虹,温志渝,陈刚,黄俭,徐溢.基于小波变换和支持向量机的光谱多组分分析[J].光子学报,2005,34(10):1514-1517. 被引量:13
  • 4MANDUCHI R, CASTANO A, TALUKDER A, et al. Obstacle detection and terrain classification for autonomous off-road navigation[J]. Autonomous Robots, 2005,18 : 81-102.
  • 5PUN C M,LEE M C. Log-polar wavelet energy signatures for rotation and scale invariant texture classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(5) :590- 603.
  • 6MANTHALKAR R, BISWAS P K, CHATTERJI B N. Rotation and scale invariant texture features using discrete wavelet packet transform[J]. Pattern Recognition Letters, 2003,24:2455-2462.
  • 7CHARAI.AMPIDIS D, KASPARIS T. Wavelet based rotational invariant roughness features for texture classification and segmentation [J]. Processing,2002,11(8) :825.
  • 8CHEN G Y, BUI T D, KRZYZAK A. Rotation invariant pattern recognition using ridgelet, wavelet cycle-spinning, and fourier features[J].Pattern Recognition, 2005,38 ( 12 ) : 2314- 2322.
  • 9HUANG K, AVIYENTE S. Rotation invariant texture classification with ridgelet transform and fourier transform [C]. Proceeding of IEEE International Conference on Image Processing, 2006 : 2141- 2144.
  • 10PAN W, BUI T D, SUEN C Y. Rotation invariant texture classification by ridgelet transform and frequency-orientation space decomposition[J]. Signal Processing, 2008,88 : 189-199.

共引文献11

同被引文献38

  • 1丘通强,林少宝,吴焕贞.鲜牛乳中体细胞数检测方法探讨[J].现代食品科技,2005,21(2):158-160. 被引量:16
  • 2周颖颖,周振宇,孙宁,鲍旭东.基于改进LBP特征的白细胞识别[J].生物医学工程研究,2005,24(4):242-246. 被引量:13
  • 3郑浩,高飞,徐晔,姚火春.应用上海乳房炎检测法检测奶牛隐性乳房炎[J].畜牧与兽医,2006,38(1):47-48. 被引量:13
  • 4GB1103-2007,棉花细绒棉[S].
  • 5Ojala T, Piefikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 6Qian X, Hua X, Chen P, et al. PLBP: An effective local binary patterns texture descriptor with pyramid representation[J]. Pattern Recognition, 2011, 44(10): 2502-2515.
  • 7Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Trans on Systems, Man and Cybernetics, 1973, 3(6): 610-621.
  • 8Haralick R M. Statistical and structural approaches to tex0are[J]. Proceedings oflEEE, 1979, 67(5): 786-804.
  • 9Liu G H, Yang J Y. Image retrieval based on the texton co-occurrence naatrix[J]. Pattern Recognition, 2008, 41(12): 3521 -3527.
  • 10Baraldi A, Palmiggiani F. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters[J]. IEEE Transactions on Geosciences and Remote Sensing, 1995, 33(2): 293-304.

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部