期刊文献+

基于ICA与GA的语音特征提取方法 被引量:1

Method of Speech Feature Extraction Based on Independent Component Analysis and Genetic Algorithm
下载PDF
导出
摘要 为了提高噪声环境中的语音识别率,将独立成分分析(ICA)方法用于语音信号特征提取,并使用遗传算法(GA)将提取出来的高维特征进行选择,最后得到的语音特征被用于基于高斯混合模型的语音识别应用中,并与传统的Mel倒谱系数(MFCC)特征进行比较。实验结果表明基于ICA与GA的语言特征优于传统的MFCC特征。 In order to improve the speech recognition in noisy environment, applies Independent Compo- nent Analysis (ICA) to obtain speech feature extraction. And uses Genetic Algorithm (GA) to select feature from the high-dimensional features. Uses the obtained feature in speech recogni- tion which is based on Gaussian Mixed Model (GMM). Compared with normal Mel-Frequency Cepstral Cofficients(MFCC). The experimental results show that the proposed ICA is better than normal MFCC.
作者 刘婷 史继飞
出处 《现代计算机》 2013年第21期24-28,共5页 Modern Computer
关键词 独立成分分析 遗传算法 语音识别 噪声 ICA GA Speech Recognition Noise
  • 相关文献

参考文献6

  • 1Comon P. Independent Component Analysis. A New Concept[J]. Signal Processing, 1994,36 : 287-314.
  • 2Kwon O.W.,Lee T.W. Phoneme Recognition Using ICA Based Feature Extraction and Transformation[J}. Signal Pro- cessing, 2004,84:1005 1019.
  • 3Hyvarinen A,Karhunen J,Oja E. Independent Component Analysis[M}. New York :John Wiley & Sons, 2001.
  • 4Li Y,Amari S,Cichocki A. Underdetermined Blind Source Separation Based on Spare Representation[J}. Signal Process- ing,2006,54 (2) :423-437.
  • 5Goldberg D E. Genetic Algorithms in Search,Optimization and Machine Learning[M}. Addison Wesley Publishing Com- pany, 1989.
  • 6雷英杰,张善文.MatLab遗传算法工具箱及应用[M].西安电子科技大学出版社.2010.

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部