期刊文献+

A SOLUTION OF A GENERAL EQUILIBRIUM PROBLEM 被引量:1

A SOLUTION OF A GENERAL EQUILIBRIUM PROBLEM
下载PDF
导出
摘要 Under the framework of a real Hilbert space, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem and the set of fixed points of a nonexpansive semigroup. Moreover, a numerical example is presented. This example grantee the main result of the paper. Under the framework of a real Hilbert space, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem and the set of fixed points of a nonexpansive semigroup. Moreover, a numerical example is presented. This example grantee the main result of the paper.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2013年第6期1598-1614,共17页 数学物理学报(B辑英文版)
基金 IKIU,for supporting this research(Grant No.751168-91)
关键词 nonexpansive semigroup general equilibrium problems strongly positivelinear bounded operator or-inverse strongly monotone mapping fixed point Hilbert space nonexpansive semigroup general equilibrium problems strongly positivelinear bounded operator or-inverse strongly monotone mapping fixed point Hilbert space
  • 相关文献

参考文献17

  • 1Browder E F. Fixed point theorems for noncxpansive mappings in Hilbert spaces. Proceed Nat Acad Sci, 1965, 53:1272 1276.
  • 2Charg S S, Lee J, Chan H W. A new method for solving equilibrium problem fixed point problem and variat, ional inequality problem wiyh application to optimization. Nonlinear Anal, 2009, "gO: 3307 3319.
  • 3Combettes P, Histoaga A. Eqnilibrimn programming in Hilbert spaces. J Nonlinear Conw_'x Anal, 2005, 6:117 136.
  • 4He Z. Du W S. Strong convergence theorems for equilibrium problems and fixed point peoblems: A new iterat ive method, some comments and applications. Fixed Point Theroy Appl, 2(}11, Article ll) 33, 15 pages.
  • 5Jitpvera T, Kachang P, Kumanl P. A viscosity of Ceasaro mean approximation methods for a inixed equilibrium, varational inequMities, and fixed point problems. Fixed Point Theroy Appl, 2011, Artlele ID 945051, 24 pages.
  • 6Kamraska U, Wangkeeree R. Generalized equilibrium problems and fixed point problems flr nonexpansive semigroups in Hilbert spaces, a Glob Optim, 2011, 51:689 714.
  • 7Kang 3, Su Y, Zhang X. Oenaral iterative algorithm for nonexpansive semigroups amd variational ineqmlitis in Hilbert, space. J Inequal Appl, 2010, Article ID 264052 10 pages.
  • 8Kumml P, Kachang P. A viscosity of extragradient approximation method for finding equilibirum problem, varalional inequlities and fixed point problems for nonexpansive mappings. Nonlinear Analysis: Hybid Systems, 2009, 3(4): 475 486.
  • 9Li X S, ttaung N J, Kim J K. General viscosity approximation methods for common fixed points o[" nonexpansive semigroups in Hilbert spaces. Fixed Point Theorey Appl, 2011, Article [D 383502.
  • 10Marino G, Xu H K. A Genaral iterative inethod for nonexpansive mappings in Itilbert spaces. J Math Anal Appl, 2006, 318:43 52.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部