期刊文献+

离散随机Lotka-Volterra竞争系统参数的渐近性

The Asymptotic Characteristic of the Parameters of a Discrete Stochastic Lotka-VolterraCompetition System
下载PDF
导出
摘要 Lotka-Volterra竞争系统是著名的人口动力系统模型之一。本文主要研究两种群Lotka-Volterra竞争系统。考虑到在实际中Lotka-Volterra竞争系统还受环境白噪声的影响,特别地,只需对白噪声的强度一个简单假设,就使得随机Lotka-Volterra模型的解随机最终有界。那么不同形式的环境白噪声是否会导致不同的结果,白噪声的出现是否会影响已有结论,并进行了研究。本文先对系统做变量替换,再通过重对数定律讨论了具有随机扰动的一个两种离散随机Lotka-Volterra竞争系统的参数的渐近性,主要结果以定理3给出。 Lotka-Volterra competition system is one of the famous population dynamic system models. In this paper, the Lotka-Volterra competition system about two populations is researched. Considering that Lotka-Volterra competition system is often affected by environment white noises in practice,particularly,the solution of the stochastic Lotka-Volt-erra competition system is random ultimately bounded when a simple assumption to the intensity of white noises is made. So different white noises will cause different results, then whether the appearance of white noises will affect the previous result, that needs to be studied. In this paper, firstly variable substitutions to the system are used, and then the asymptotic characteristic of the parameters of a discrete stochastic Lotka-Volterra competition system is discussed by Law of the iterated logarithm,the result is given by theorem 3.
出处 《长春理工大学学报(自然科学版)》 2013年第5期84-87,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 吉林省教育厅资助项目(KYC-JC-XM-2012-109)
关键词 离散随机Lotka-Volterra竞争系统 重对数定律 参数的渐近性 discrete stochastic Lotka-Volterra competition system law of the iterated logarithm asymptotic characteris-tic of the parameters
  • 相关文献

参考文献5

  • 1Shoji I,Ozako T.Comparative study of estimationmethods for continuous time stochastic processes[J].Journal of Time Series Analysis,1997,5 (18):485-506.
  • 2Taniguchi T.Almost sure exponential stability forstochastic partial functional diffemential equations[J].Stochastic Anal Appl,1998,16(5):965-975.
  • 3Hall P, Heyde C C. Martingale Limit Theory andIts Application,Academic press[M].New York, 1980:238-257.
  • 4Brockwell P J,Davis R.A,田铮译?时间序列的理论与方法(第二版)[M].北京:高等教育出版社,2003:342-360.
  • 5Gard T C. Introduction to Stochastic DifferentialEquations[M].New York, 1988: 198—220.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部