期刊文献+

研究型教学探讨有限元法处理两点边值问题

Research Teaching to Discuss FEM Treatment Boundary Value Problems
下载PDF
导出
摘要 本文介绍偏微分方程数值解法课程的教学内容和一些体会,通过一个具体例题详实地讲解有限元法理论基础与编程实现的过程,利用理论阐述和研究展示,从理论分析和数值实验两方面讲解有限元法数值解的稳定性和收敛性,进而通过数值分析达到研究型教学的良好效果。 This article describes the numerical solution of partial differential equations course content and some experience,through a detailed and specific example to explain the theoretical basis of the finite element method and the programming process, the use of theoretical explanations and research shows, from the theoretical analysis and numerical experiments both to explain the limited element method for the numerical solution of the stability and convergence, and then through research teaching numerical analysis to achieve good results.
作者 江山
出处 《科教导刊》 2013年第31期218-218,224,共2页 The Guide Of Science & Education
关键词 研究型教学 偏微分方程 有限元法 实例演示 research teaching partial differential equations finite element method examples presentation
  • 相关文献

参考文献6

二级参考文献23

  • 1王枚,袁驷.Timoshenko梁单元超收敛结点应力的EEP法计算[J].应用数学和力学,2004,25(11):1124-1134. 被引量:19
  • 2冯奎胜,卢万铮,朱章虎.电磁场数值计算方法分析[J].山西电子技术,2005(6):43-46. 被引量:9
  • 3Maeklin P, McDougall S, Anderson A R, et al. Multiscale modeling and nonlinear simulation of vascular tumour growth [J]. JMath Biol, 2009, 765:98.
  • 4Gockenbach M S. Understanding and implementing the finite element method [M]. Philadelphia.. Society for Industrial and Applied Mathematics, 2006.
  • 5Evans L C. Partial differential equations [M]. Rhode Island: American Mathematical Society, 1998.
  • 6Zheng X, Wise S M, Cristini V. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasionvia an adaptive finite-element/level-set method [J]. Bull Math Biol, 2005, 211:59.
  • 7Wayne R. Dyksen. Tensor product generalized ADI methods for separable elliptic problems.SIAM J. Numer. Anal., 1987, 24(1): 59-76
  • 8Robert E, Lynch, John Rice R, Donald H. Thomas. Direct solution of partial difference equations by tensor product methods. Numer. Math., 1964, 6:185-199
  • 9Jim Douglas Jr, Gunn J E. A general formulation of alternating direction methods: Part Ⅰ,Parabolic and hyperbolic problems. Numer. Math.,1964, 6:428-453
  • 10Jim Douglas Jr, Seongjal Kim. Improved accuracy for locally one-dimensional methods for parabolic equations. Math. Models Methods Appl. Sci., 2001,11(9): 1563-1579

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部