期刊文献+

基于光照补偿空间的鲁棒人脸识别 被引量:4

Illumination compensation subspace based robust face recognition
原文传递
导出
摘要 如何应付光照条件变化是人脸识别的主要研究课题,文中提出了一种基于单幅注册图像的光照不变人脸识别方法.文中首先分析证明了同一个主体的不同光照图像之间的差别,可以通过一个与身份和光照独立的子空间进行线性描述,我们称之为光照补偿空间;然后介绍了光照补偿空间的构建,并且提出了一种简单有效的基于光照补偿的人脸识别算法,将图像光照差异补偿与人脸识别过程统一在一起,通过一次1优化就可以完成人脸身份的识别.文中方法在没有明显增加优化复杂度的前提下,有效降低了光照差异对于人脸识别算法精度的影响.文中提出的方法在Extended Yale B图像库上进行了验证. How to deal with illumination variation is an important research topic of face recognition. In this paper, an illumination invariant face recognition strategy is put forward to deal with single gallery recognition. We give a proof that the illumination distinction among face images of s specific people could be linearly described through a carefully constructed subspace that is independent of both appearance and illumination, which is called the illumination compensation subspace. And then the subspace construction approach is introduced. Finally, a straightforward yet effective illumination compensation based face recognition algorithm is proposed which unifies both the calculation of illumination compensation and face recognition process into once l1 optimization. In a word, our approach effectively reduces the influence of illumination diversity on face recognition accuracy without incurring evident increase in optimization complexity. The proposed method has been evaluated on the Extended Yale B dataset.
出处 《中国科学:信息科学》 CSCD 2013年第11期1398-1409,共12页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61302127 61173032) 天津市高等学校科技发展基金计划项目(批准号:20120805) 国家重点基础研究发展计划(批准号:2011CB302400)资助项目
关键词 人脸识别 光照补偿 稀疏表示 线性子空间 l1优化 face recognition, illumination compensation, sparse representation, line subspace, l1 optimization
  • 相关文献

参考文献22

  • 1Zhao W, Chellappa R, Phillips P J, et al. Face recognition: a literature survey. ACM Comput Surv, 2003, 35: 399-458.
  • 2Gonzalez R C, Woods R E. Digital Image Processing. 3rd ed. New Jersey: Prentice Hall, 2006.
  • 3Viola P, Jones M J. Robust real-time face detection. Int J Comput Vision, 2004, 57: 137-154.
  • 4Chen W, Er M J, Wu S. Illumination compensation and normalization for robust face recognition using discrete cosinet ransform in logarithm domain. IEEE Trans Syst Man Cy B, 2006, 36: 458-466.
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linearp rojection. IEEE Trans Pattern Anal, 1997, 19: 711-720.
  • 6Lee J A, Verleysen M. Nonlinear Dimensionality Reduction. New York: Springer, 2007.
  • 7He X, Yan S, Hu Y, et al. Face recognition using Laplacianfaces. IEEE Trans Pattern Anal, 2005, 27: 328-340.
  • 8He X, Niyogi P. Locality preserving projections. In: Proceedings of Advances in Neural Information ProcessingS ystems. Cambridge: MIT Press, 2003.
  • 9G?rtner T. Kernels for Structured Data. Singapore: World Scientific, 2009.
  • 10Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans Pattern Anal,2009, 31: 210-227.

同被引文献33

  • 1Li S Z, Jain A K. Handbook of face recognition [M]. 2nd ed. Heidelberg: Springer, 2011.
  • 2Abate A F, Nappi M, Riccio D, et al. 2D and 3D face recognition: a survey [J]. Pattern Recognition Letters, 2007, 28(14) : 1885-1906.
  • 3Tan X Y, Chen S C, Zhou Z H, etal. Face recognition from a single image per person: a survey [J]. Pattern Recognition, 2006, 39(9): 1725-1745.
  • 4Phillips P J, Flynn P J, Scruggs T, et al. Overview of the face recognition grand challenge [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2005, 1:947-954.
  • 5Phillips P J, Moon H, Rizvi S A, et al. The FERET evaluation methodology for face-recognition algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10) : 1090-1104.
  • 6Li Y L, Feng J F. Frontal face synthesizing according to multiple non-frontal inputs and its application in face recognition [J]. Neurocomputing, 2012, 91:77-85.
  • 7Li Y L, Meng L, Feng J F. Face illumination compensation dictionary [J]. Nenrocomputing, 2013, 101:139-148.
  • 8ISO/IEC 19794-5 : 2011 Information technology--Biometric data interchange formats--Part 5: Face image data[S].
  • 9ISO/IEC JTC 1/SC 37 N 3610 Biometric data interchange formats--Part 5 Face image data[S].
  • 10Ahonen T, Hadid A, Pietikiinen M. Face recognition with local binary patterns [M ]/Lecture Notes in Computer Science. Heidelberg: Springer, 2004, 3021: 469-481.

引证文献4

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部