期刊文献+

代价敏感最优误差边界选择 被引量:2

Cost-Sensitive Optimal Error Bound Selection
下载PDF
导出
摘要 为处理有测量误差的数据,并且考虑到误分类代价不仅与样本相关,而且与测试代价紧密相关,提出了一种代价敏感最优误差边界选择方法。根据不同的误差边界自适应生成测试代价及误分类代价,以最小化总代价为目标,设计了基于不同误差边界的属性选择方法,进而进行最优误差边界选择。在四个UCI标准数据集上的实验分析显示,该设计方案可有效地选出最优误差边界,以保证所选属性集合具有最小的平均总代价。 This paper proposes a cost-sensitive optimal error bound selection approach to address data with measure- ment errors. The considered misclassification costs are sensitive to both examples and test costs. With this in mind, misclassification costs and test costs are adaptively computed according to error bound. In order to minimize aver- age total cost, this paper designs an algorithm for cost-sensitive optimal error bound selection. The experimental results on four UCI databases show that the designed algorithm can select the feature set with the optimal error bound. The selected feature set leads to the lowest average total cost.
作者 林姿琼 赵红
出处 《计算机科学与探索》 CSCD 2013年第12期1146-1152,共7页 Journal of Frontiers of Computer Science and Technology
基金 福建省教育厅科技重点项目 福建省教育厅科技项目 漳州市自然科学基金~~
关键词 粗糙集 测量误差 代价敏感 属性选择 rough set measurement error cost sensitive feature selection
  • 相关文献

参考文献15

  • 1Lin T Y. Granular computing on binary relations I: data mining and neighborhood systems[J]. Rough Sets in Knowledge Discovery, 1998, 1: 107-121.
  • 2Domingos P. MetaCost: a general method for making classi- tiers cost-sensitive[C]//Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '99). New York, NY, USA: ACM, 1999: 155-164.
  • 3Du Yong, Hu Qinghua, Zhu Pengfei, et al. Rule learning fl classification based on neighborhood covering reduction[Jt Information Sciences, 2011, 181 (24): 5457-5467. |.
  • 4Fan Wei, Stolfo S, Zhang Junxin, et al. AdaCost: misclassifi- cation cost-sensitive boosting[C]//Proceedings of the 16th Intemational Conference on Machine Learning (ICML '99). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1999: 97-105.
  • 5Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems[J]. International Journal of Intelligent Systems, 2001, 16(1): 105-120.
  • 6[ Zhao Hong, Min Fan, Zhu W. Test-cost-sensitive attribute reduction based on neighborhood rough set[C]//Proceedingsof the 2011 IEEE Intemational Conference on Granular Computing (GrC' 11), Nov 8-10, 2011: 802-806.
  • 7Tumey P D. Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm[J]. Journal of Artificial Intelligence Research, 1995, 2(1): 369-409.
  • 8Yao Yiyu, Wong S K M. A decision theoretic framework for approximating concepts[J]. International Joumal of Man- Machine Studies, 1992, 37(6): 793-809.
  • 9Yao Yiyu, Zhao Yan. Attribute reduction in decision-theoretic rough set models[J]. Information Sciences, 2008, 178(17): 3356-3373.
  • 10Min Fan, Liu Qihe. A hierarchical model for test-cost-sensitive decision systems[J]. Information Sciences, 2009, 179(14): 2442-2452.

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部