期刊文献+

硅溶胶结合碳化硅质浇注料的研制及其热修应用

Preparation and Application of Sol Combined Carborundum
下载PDF
导出
摘要 以98碳化硅(粒径为3~5mm、1~3mm及0~1mm)为骨料,以98碳化硅粉(≤0.043mm),活性α-Al2O3微粉为细粉;研制了采用硅溶胶作结合剂的碳化硅质浇注料。该浇注料具有较高的中温和高温强度,实验测得经800℃×3h和1400℃×3h处理后的其试样抗折强度和耐压强度都分别达到了15.0MPa和80.0MPa以上;试样具有良好的抗渣侵蚀性、热震稳定性(采用1100℃≠水冷抗热震循环实验〉100次),和较好的导热性能,实验测得110℃导热系数为26.81W/m·K,200℃导热系数为23.42W/m·K,500℃导热系数为21.75w/m·K,1000℃导热系数为18.91W/m·K;同时该浇注料还具有较好的高温施工性能和可快速烘烤性,有效的简化了干燥和烘烤工艺,缩短了高炉的休整时间,提高了高炉生产效率。 The composition of the samples were used carborundum with the grain size of 3-5 mm, 1-3 mm and ≤ 1 mm as the aggregates, the carborundum powder(grain size 40. 043 ram) and the active α-Al2O3 micro powder are served as the fine powder to develop and prepare the silica-sol to cement carborundum castable. This castable is provided with higher medium-temperature and high-temperature strength, and the rupture strength and compression strength for this casting after being treated under 810℃ × 3 h and 1400 ℃ × 3 h reach over 15.0 MPa and 80.0 MPa respectively, with favorable slag-erosion resistance and thermal-shock resistance stability (with adoption of 1100 ~C →←-water-cooling thermal-shock resistance circulation experiment 〉 100 times) ; Excellent thermal conductivity: the measured thermal conductivity coefficient is of 26.81 W/m · K via experiment at 110 22, with 23.42 W/m · K for thermal conductivity coefficient at 200℃and 21.75 W/m ·K for thermal conductivity coefficient at 500 22 as wall as 18.91 W/m - K for thermal conductivity coefficient at 1000 22. Meanwhile, this castable is also provided with better high-temperature construction performance and rapid baking property to effectively simplify the drying and baking technology, shorten the time of damping down for blast furnace and improve the productivity of blast durance.
出处 《硅酸盐通报》 CAS CSCD 北大核心 2013年第11期2396-2399,共4页 Bulletin of the Chinese Ceramic Society
关键词 硅溶胶结合碳化硅质浇注料 中温及高温强度 抗侵蚀和导热性 抗热震稳定性 sol combined carborundum medium-temperature and high-temperature strength excellent erosion resistance and thermal conductivity thermal-shock resistance stability
  • 相关文献

参考文献8

二级参考文献17

  • 1汪厚植,赵惠忠,顾华志,王周福,邓勇跃.纳米技术在耐火材料中的应用研究[J].武汉科技大学学报,2005,28(2):130-133. 被引量:22
  • 2Subrata Banerjee,姚金甫(译) 杜锋(校).耐火材料技术的近期发展[J].世界钢铁,2005,5(5):58-62. 被引量:3
  • 3江伟辉,谢笑虎,于云.钛酸铝陶瓷凝胶注模成型工艺的研究[J].中国陶瓷,2006,42(9):9-12. 被引量:8
  • 4韩行禄.不定型耐火材料[M].北京:冶金工业出版社,2003:173-174.
  • 5Ismael M R, Salomao R, Pandolfelli V C. Refractory castables based on colloidal silica and hydratable alumina [J]. American Ceramic Society Bulletin, 2007,86(9) :58-61.
  • 6Karadeniz E, Gurcan C, Ozgen S,et al. Properties of alumina based low-cement self flowing castable refractories[J]. Journal of the European Ceramic Society,2007,27:1849-1853.
  • 7Dos Anjos R D, Ismael M R, de Oliveira I R,et al. Workability and setting parameters evaluation of colloidal silica bonded refractory suspensions[J]. Ceramics International, 2008 ( 1 ) : 165-171.
  • 8Ghosh S, Majumdar R, Sinhamahapatra B K, et al. Microstructures of refractory castables prepared with sol gel additives[J]. Ceramics International, 2003,29:671-677.
  • 9M.J.Edirisingghe, and J.R.G. Evans Review:Fabrication of Engineering Ceramics by Injection Molding, Ⅱ Techniques,Int. J.High Technology Ceramics[J]. 1986(2): 249-278
  • 10Y.X.Huang, A.M.R Senos etc. Preparation of an Aluminium Titanate -25vo1% Mullite Composite by Sintering of Gel-Coated powders[J] Journal of the European Ceramic Society 1997(17): 1239-1246.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部