期刊文献+

MIMO-OFDM系统的SAGE-ISD联合估计检测算法 被引量:1

SAGE-ISD joint estimation and detection algorithm in MIMO-OFDM systems
下载PDF
导出
摘要 针对采用最小均方误差估计MIMO-OFDM系统信道时计算复杂度高,以及采用期望最大化算法存在收敛速度慢等缺陷,提出一种新的联合估计检测算法,将线性最小均方误差信道估计、广义空间迭代期望最大化算法和改进球形译码检测算法相结合进行联合估计检测,采用线性最小均方误差信道估计对信道进行信道初估计,并利用联合迭代技术结合广义空间迭代期望最大化算法及改进球形译码检测算法进行信道估计校正和信号检测,从而提高系统的可靠性。理论研究和仿真结果表明:在相同误比特率下,算法性能优于传统的检测算法,其与理想信道估计下的最大似然检测算法仅平均相差0.5 dB。该算法在较少的迭代次数下,可获得较理想的信道估计和检测结果,并以较低系统复杂度的代价,逼近理想信道估计下的最大似然检测算法。 A new joint estimation and detection algorithm was put forward, aiming at the disadvantages of high computational complexity of channel estimation for MIMO-OFDM system when using minimum mean square error and slow convergence speed when using expectation maximization algorithm. The algorithm combines LMMSE channel estimation, SAGE algorithm and improved sphere decoding algorithm to obtain joint estimation and detection. It employs linear minimum mean square error channel estimation to achieve rough estimation, and then uses joint iteration technology to get channel estimation adjustment and signal detection combining SAGE algorithm, which improves sphere decoding algorithm, and thereby enhances the reliability of the system. Theoretical analysis and simulation results show that, with the same bit error rate, the performance of our algorithm is superior to that of traditional detection algorithm. The mean difference with ideal channel estimation under the maximum likelihood algorithm is only 0.5 dB. The algorithm can obtain rather perfect result of channel estimation and detection with fewer iterative times. Meanwhile, it approaches the ideal channel estimation under the maximum likelihood algorithm with lower complexity.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第10期4094-4100,共7页 Journal of Central South University:Science and Technology
基金 “十一五”国防预研基金资助项目(xxxx607010102) 中央高校基本科研业务专项基金资助项目(HEUCF100814)
关键词 MIMO-OFDM 联合估计检测 广义空间迭代期望最大化算法 改进球形译码算法 信道估计 MIMO-OFDM joint estimation and detection SAGE algorithm improved sphere decoding algorithm channel estimation
  • 相关文献

参考文献19

  • 1Katariya A, Yadav A, Jain N, et al. BER Performance Criteria Based on Standard IEEE 802.1 la for OFDM in Multipath Fading Environments[C]//Computational Intelligence and Communication Networks (CICN) International Conference. Gwalior, India: IEEE Press, 2011:238-241.
  • 2YANG Hongwei. A road to furore broadband wireless access: MIMO-OFDM based air interface[J]. IEEE Communication Magazine, 2005, 43(1): 53-60.
  • 3Song W G, Lim J T. Channel estimation and signal detection for MIMO-OFDM with time varying channels[J]. IEEE Communications Letters, 2006, 10(7): 540-542.
  • 4Damen M O, Chkeif A, Belfiore J C. Lattice code decoder for space-time codes[J]. IEEE Transaction on Communication letters, 2000, 4(5): 161-163.
  • 5QI Xiaofeng, Holt K. A lattice-reduction-aided soft demapper for high-rate coded MIMO-OFDM systems[J]. IEEE Transaction on Signal Processing, 2007, 5(14): 305-308.
  • 6Viterbo E, Boutros J. A universal lattice code decoder for fading channels[J]. IEEE Trahsaction on Information Theory, 1999, 45(7): 1639-1642.
  • 7Chan A M, Inkyu Lee. A new reduced-complexity sphere decoder for multiple antenna systems[C]//IEEE International Conference on Communications, ICC 2002. Granada, Spain: ICC, 2002: 460-464.
  • 8GAO Feifei, CUI Tao, Nallanathan A. On channel estimation and optimal training design for amplify and forward relay networks[J]. IEEE Transactions on Wireless Communications, 2008, 5(7): 1907-1916.
  • 9Aditya K J, Bhaskar D R. A semi-blind technique for MIMO channel matrix estimation[C]//Proc IEEE Signal Processing Advances in Wireless Communications, Perugia, Italy: IEEE Press, 2004: 304-308.
  • 10TU ChaoCheng, Champagne B estimation for MIMO-OFDM averaging[J]. IEEE Transactions 59(3): 1539-1544. Subspace-based blind channel systems with reduced time on Vehicular Technology, 2010,.

二级参考文献12

  • 1D. Gesbert, M. Shaft, D. Shiu, et al. From theory to prac- tice: An overview of MIMO space-time coded wireless sys- tems. IEEE Journal on Selected Areas in Communication, 2003, 21(3): 281-302.
  • 2A. J. Paulraj, D. A. Gore, R. U. Nabar, et al. An overview of MIMO communications-a key to gigabit wireless. Proceeding oflEEE, 2004, 92(2): 198-218.
  • 3N. R. Van, R. Prasad. OFDM wireless multimedia communi- cations. London: Artech House Press, 2000.
  • 4Y. Li. Pilot-symbol-aided channel estimation for OFDM in wireless systems. IEEE Trans. on Vehicular Technology, 2000, 49(4): 1207-1215.
  • 5B. Hassibi, A. H. Sayed, T. Kailath. Linear estimation in Krein space-Part Ⅰ: theory. IEEE Trans. on Automation Control, 1996, 41(1): 18-33.
  • 6B. Hassibi, A. H. Sayed, T. Kailath. Linear estimation in Krein space-Part Ⅱ: Applications. IEEE Trans. on Automation Con- trol, 1996, 41(1): 3449.
  • 7W. Zhuang. Adaptive H∞ channel equalization for wireless personal communications. 1EEE Trans. on Vehicular Technol- ogy, 1999, 48(1): 126-136.
  • 8A. Maleki-Tehrani, B. Sayyarrodsari, B. Hassibi, et al. Estimation-based synthesis of H∞ optimal adaptive equaliz- ers over wireless channels. Proc. oflEEE GLOBECOM, 1999: 457-461.
  • 9C. Cao, L. H. Xie, H. S. Zhang. H∞ channel estimator de-sign for DS-CDMA sysytems: a polynomial approach in Krein space. IEEE Trans. on Vehicular Technology, 2008, 57(2): 819-827.
  • 10Y. Xie, C. N. Georghiades. Two EM-type channel estimation algorithms for OFDM with transmitter diversity. IEEE Trans. on Communications, 2003, 51(1): 106-115.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部