期刊文献+

共转化水稻植株T-DNA共整合结构的分子分析 被引量:1

Molecular Characterization of Co-integrated T-DNA Structures in Cotransformed Rice Plants
下载PDF
导出
摘要 为研究共转化水稻的T-DNA共整合结构,本研究利用分别含有HPT、GFP和mCherry基因的T—DNA载体共转化水稻,从共转化植株获得了22个由两种T—DNA共整合形成的串联结构和25个关于相同T—DNA的多拷贝结构。序列分析结果表明,相邻T-DNA通过LRRL、RLLR和LRLR模式相互连接,由RB参与形成的T-DNA连接区均发生RB序列的完全缺失,在LB参与的T-DNA连接区,LB发生不同数目的碱基缺失或其3'末端的1个C碱基发生C→T颠换,因而使T-DNA连接区表现多种变异类型。此外,伴随着RB或LB边界的完全缺失,其边界内侧序列也缺失1-643bp。在共转化水稻植株的T-DNA连接区不存在拟南芥相关报道所述的填充DNA序列。研究结果为深入解析禾谷类植物T—DNA共整合的分子机理奠定了重要基础。 To investigate the co-integrated T-DNA structures in co-transformed rice plants, we co-transformed T- DNA vectors containing each of the HPT, GFP and mCherry genes into rice. Twenty-two tandem T-DNA struc- tures containing two T-DNA types and twenty-five multi-copy structures with one T-DNA type were identified in co-transformed rice plants. Based on the sequencing results, the co-integrated T-DNAs were linked into LRRL, RLLR and LRLR patterns. Deletion of complete RB sequence was observed in all the T-DNA junctions where RB was involved. In T-DNA junctions where LB was involved, the LB sequence lost various numbers of nucleotides or underwent a C---~T transversion at the 3' end. For this reason, the LB-involved T-DNA junctions showed different types of sequence variation. Also, the deletion of whole LB or RB sequence was coincident with the loss of 1-643 nucleotides in LB or RB inward sequence. The T-DNA junctions in co-transformed rice plants did not contain any filler DNA that was previously identified in co-transformed Arabidopsis. These results provided important foundation for elucidation of the molecular mechanism of T-DNA co-integration in monocot plants.
出处 《分子植物育种》 CAS CSCD 北大核心 2013年第6期701-711,共11页 Molecular Plant Breeding
基金 国家转基因生物新品种培育重大专项课题(2011ZX08010-002-002) 浙江省重点科技创新团队--转基因农作物新品种培育科技创新团队项目(2011R50023) 浙江省农科院学科带头人启动基金共同资助
关键词 共转化 转基因水稻 T—DNA 共整合 Co-transformation, Transgenic rice, T-DNA, Co-integration
  • 相关文献

参考文献15

  • 1Afolabi A.S., Worland B., Snape J.W., and Vain P., 2004, A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations, Theor. Appl. Genet., 109(4): 815-826.
  • 2De Buck S., Jacobs A., Van Montagu V., and Depicker A., 1999, The DNA sequences of T-DNA junctions suggest that com- plex T-DNA loci are formed by a recombination process re- sembling T-DNA integration, Plant J., 20(3): 295-304.
  • 3De Buck S., Podevin N., Nolf J., Jacobs A., and Depicker A., 2009, The T-DNA integration pattern in Arabidopsis trans- formants is highly determined by the transformed target cell, Plant J., 60(1): 134-145.
  • 4De Neve M., De Buck S., Jacobs A., Van Montagu V., and Depicker A., 1997, T-DNA integration patterns in co-tra- nsformed plant ceils suggest that T-DNA repeats originate fom co-integration of separate T-DNAs, Plant J., 11 (1):15-29.
  • 5DeUaporta S.L., Wood J., and Hicks J.B., 1983, A plant DNA minipreparation: version If, Plant Mol. Biol. Rep., 1(4): 19-21.
  • 6Depicker A., Sanders M., and Meyer P., 2005, Transgene silenc- ing, In: Meyer P. (ed.), Plant Epigenetics, Blackwell Publis- hing Ltd, Oxford, UK, pp. 1-32.
  • 7Ebinuma H., Sugita K., Matsunaga E., Endo S., Yamada K., and Komamine A., 2001, Systems for the removal of a selection marker and their combination with a positive marker, Ptant Cell Rep., 20(5): 383-392.
  • 8Halpin C., 2005, Gene stacking in transgertic plants-the challenge for 21 century plant biotechnology, Plant Biotechnol. J., 3 (2): 141-155.
  • 9Jones J.D.G., Gilbert D.E., Grady K.L., and Jorgensen R.A.,1987, T-DNA structure and gene expression in petunia pla- nts transformed by Agrobactertm mmefaciens C58 derivatives, Mol. Gen. Genet., 207:478-485.
  • 10Jorgensen R., Snyder C., and Jones J.D., 1987, T-DNA is orga- nized predominately in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 deriva- tives, Mol. Gen. Genet., 207:471-477.

二级参考文献72

共引文献13

同被引文献13

  • 1Prelich G. Gene overexpression : uses, mechanisms, and in- terpretation [ J ]. Genetics,2012,190 (3) : 841 - 854.
  • 2Kondou Y, Higuchi M, Matsui M. High-throughput character- ization of plant gene functions by using gain-of-function tech- nology [ J]. Annual Review of Plant Biology, 2010,61 : 373 -393.
  • 3Molla KA, Karmakar S, Chanda PK, et al. Rice oxalate oxidase gene driven by green tissue-specific promoter increases toler- ance to sheath blight pathogen( Rhizoctonia solani)in transgen- ic rice [J]. Molecular Plant Pathology, 2013, 14 ( 9 ) : 910-922.
  • 4Sasaki A, Yamaji N, Ma JF. Overexpression of OsHMA3 en- hances Cd tolerance and expression of Zn transporter genes in rice [ J ]. Journal of Experimental Biology, 2014,65 ( 20 ) : 6013 - 6021.
  • 5Chen S,Songkumarn P,Liu J, et al. A versatile zero back- ground T-vector system for gene cloning and functional genom- ies [ J ]. Plant Physiology, 2009, 150 ( 3 ) : 1111 - 1121.
  • 6Qiu D,Xiao J,Ding X, et al. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling [ J ]. Molecular Plant-Microbe Interactions ,2007,20( 5 ) :492 - 499.
  • 7Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta- glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO Journal,1987,6(13) :3901.
  • 8Qu S,Liu G,Zhou B, et al. The broad-spectrum blast resist- ance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice [ J ]. Genetics,2006,172 ( 3 ) : 1901 - 1914.
  • 9Gao X,Zhou J,Li J, et al. Efficient generation of marker-free transgenie rice plants using an improved transposon-mediated transgene reintegration strategy [ J ]. Plant Physiology, 2015, 167(1) :11 -24.
  • 10Chen L,Zhang S, Beachy RN, et al. A protocol for consist- ent, large-scale production of fertile transgenic rice plants [ J ]. Plant Cell Reports, 1998,18 ( 1-2 ) : 25 - 31.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部