期刊文献+

新闻推荐的多维兴趣模型与传播分析 被引量:5

Analysis of News Diffusion in Recommender Systems Based on Multidimensional Tastes
下载PDF
导出
摘要 如何将合适的信息推荐给合适的用户以满足用户的个性化需求,是推荐系统的基本问题。新兴的社会化推荐系统(social recommender system)通过兴趣相似的用户之间分享信息而达到个性化推荐的目的。使用多维兴趣向量刻画用户的兴趣,采用多智能体模型(multi-agent model)模拟,并引入用户和新闻的质量,分析了用户网络的结构特征以及质量因素对新闻推荐和传播的影响。实验结果表明:不同社区的主题不同,社区的中心用户兴趣专一,与社区的主题一致。此外,推荐中引入质量因素可以加快系统在高推荐成功率上的收敛速度,更能区分不同质量用户的粉丝数和不同质量新闻的传播深度与广度,增强了高质量用户和新闻的影响力,提高了系统中新闻推荐的专业水平。 How to deliver the right information to the fight person to meet the individual needs of users is a basic prob- lem in recommender systems. The emerging social recommender systems are personalized ones with sharing information of similar interest users. Using multidimensional vectors to characterize the user's interest, simulating with multi-agent model,and factoring the quality of the users and news into recommendation, this paper analyzed impact of leader follo wer network the structure and the quality factors on the recommendations and diffusion of news. The results indicate that different communities have different themes, and the core users of communities not only concentrate on one catego- ry, but also share the same interest with the community theme. Additionally, introducing the quality of users and news into systems not only can speed up the convergence of higher success rate of recommendation, but also can distinguish the followers of different users and the behaviors of propagation of different news, while raising the influence of excel- lent users and news and improving the professional level of recommendation.
出处 《计算机科学》 CSCD 北大核心 2013年第11期126-130,共5页 Computer Science
基金 国家自然科学基金(60973069 90924011 60903073 60973120) 华为高校合作基金(YBCB2011057)资助
关键词 社会化推荐 多维兴趣 用户相似度 社区结构 新闻传播 Social recommender systems, Multidimensional tastes, Similarity of users, Structure of communities, News diffusion
  • 相关文献

参考文献15

  • 1Lii Linyuan,Medo M, Yeung C H, et al. Recommender systems [J]. Physics Reports,2012,519(1): 1-49.
  • 2Lang K,Weeder N. Learning to filter netnews[C]//Proceedings of the 12th International Conference on Machine Learning. Tahoe City: CA Publishers, 1995 : 331-339.
  • 3Resnick P,Varian H R. Recommender systems[J]. Communica- tions of the ACM, 1997.40 (3), 56-58.
  • 4Pazzani M J, Billsus D. Content-based Recommendation Systems [J]. Lecture Notes in Computer Science, 2007,4321 (2) : 325-341.
  • 5Resniek P, Iaeovou N, Suehak M, et al. an open architecture for collaborative filtering of netnews[C]//Computer Supported Co- operative Work. North Carolina, Chapel Hill, 1994 : 175-186.
  • 6Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of 1Oth International World Wide Web Conference. New York: ACM, 2001:285-295.
  • 7Golbeek J. Weaving a Web of Trust [J]. Science, 2008, 321 (5896) : 1640-1641.
  • 8Medo M, Zhang Yi-cheng, Zhou Tao. Adaptive model for recom- mendation of news[J]. Europhysics Letters, 2009,88 (3) : 38005.
  • 9Cimini G, Medo M, Zhou Tao, et al. Heterogeneity, quality, and reputation in an adaptive recommendation model [J]. The Euro- pean Physical Journal B, 2011,80(2) : 201-208.
  • 10Cimini G, Chen Duan-bing, Medo M, et al. Enhancing topology adaptation in information-sharing social networks[J]. Physical Review E,2012,85(4) :046108.

二级参考文献10

  • 1Adomavicius G,Tuzhilin A.Expert-driven validation of rule-based user models in personalization applications[J].Data Mi-ning and Knowledge Discovery,2001,5(1/2):33-58.
  • 2Adomavicius G,Tuzhilin A.Toward the next generation of reco-mmender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transaction on Knowledge and Data Engineering,2005,17(6):734-749.
  • 3梅田望夫.网络巨变元年-你必须参加的大未来[M].先觉:先觉出版社,2006.
  • 4Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C] //The 14th Confe-rence on Uncertainty in Artificial Intelligence.1998:43-52.
  • 5Liu Jie,Shang M S,Chen D B.Personal recommendation based on weighted bipartite networks[C] ∥The 6th International Conference on Fuzzy Systems and Knowledge Discovery.2009,8:134-137.
  • 6Resnick P,Iacovou N,Suchak M,et al.GroupLens:An open architecture for collaborative filtering of Netnews[C] ∥Proceeding of ACM 1994 Conference on Computer Supported Cooperative Work.1994:175-186.
  • 7Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithm[C] ∥The 10th Intering World Wide Web Conference.2001:285-295.
  • 8Sφrensen T.A method of establishing groups of equal amplitude in a plant based on similarity of species content and its applications to analysis of vegetation on Danish commons[J].Biologiske Skrifter,1948,5:1-34.
  • 9Leicht E A,Holme P,Newman M E J.Vertex similarity in networks[J].Physical Review E73,2006:026120.
  • 10Shang M S,Jin C H,Zhou T,et al.Collaborative filtering based on multi-channe diffusion[J].Physica A,2009,388(23):4867-4871.

共引文献12

同被引文献41

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部