期刊文献+

结合同义向量聚合和特征多类别的KNN分类算法 被引量:2

KNN Text Categorization Algorithm Based on Semantic-Vector-Combination and Multiclass of Feature
下载PDF
导出
摘要 特征选择是文本分类的关键阶段,其选择过程将影响文本分类速度与精度。χ2统计量能很好地体现词和类别之间的关系,是文本分类领域特征提取阶段的重要方法之一。分析了χ2统计量在文本分类中的应用,发现CHI向量所表达的与各类别关系的特征词无法全面表达出此类的概念含义,依赖于训练集中出现的特征情况,且该向量仅用于特征选择阶段;针对χ2统计量特征词的表达局限及其向量没有得到充分利用的问题,提出结合同义向量聚合和特征多类别的改进KNN分类算法,该方法能够综合考虑特征所表达的含义,且通过特征集多类别矩阵使CHI向量也能在分类阶段起到提高整个算法效率的作用。实验结果与分析表明,该改进算法明显提高了文本分类效率,并且提高了分类的精度。 Feature selection is the key stage in the text categorization, and the processing of it will affect the speed and accuracy of text classification. x2 statistic is a important methods in feature selection of text categorization since it mea- sures the dependence between a term and a class effectively. Nevertheless, we found the feature in the vectors of CHI can not fully express the means of concept and it depends the training text set,and the vectors of CHI are used only for the phase of feature selection after the analysis of the application of x2 statistic in the text categorization. So this paper proposed an improved kNN text categorization algorithm based on Semantic-Vector-Combination and Multi-class of fea- ture, in which the feature considers the means of concept, and the matrix of multiclass of features will improve the effi- ciency of algorithm in the stage of categorization. The results and analysis of experiments show that the efficiency of categorization is improved and its accuracy is also enhanced.
出处 《计算机科学》 CSCD 北大核心 2013年第12期55-58,共4页 Computer Science
基金 国家自然科学基金项目(61063032) 广西自然科学基金项目(2012GXNSFAA053225)资助
关键词 文本分类 χ2统计量 特征集多类别矩阵 KNN Text categorization, x2 statistic, Feature-MultiClass-Matrix, K-Nearest neighbor
  • 相关文献

参考文献11

  • 1Yang Yi-ming, Liu XirL A re-exam ination of text categorization methods[C]//Proceedings, 22nd Annual Interaitonal ACM SI- GIR Conference on Research and Development in Information Retrieval (SIGIR). 1999:42-49.
  • 2陈雅芳,徐从富.中文文本分类方法研究[D].杭州:浙江大学,2012.
  • 3李莹,张晓辉,王华勇,常桂然.一种应用向量聚合技术的KNN中文文本分类方法[J].小型微型计算机系统,2004,25(6):993-996. 被引量:13
  • 4印鉴,谭焕云.基于χ~2统计量的kNN文本分类算法[J].小型微型计算机系统,2007,28(6):1094-1097. 被引量:13
  • 5林少波,杨丹.中文文本分类特征提取方法的研究与实现[D].重庆:重庆大学,2011.
  • 6申红,吕宝粮,内山将夫,井佐原均.文本分类的特征提取方法比较与改进[J].计算机仿真,2006,23(3):222-224. 被引量:28
  • 7Yang Y,Pedersen J P. A comparative study on feature selection in text eategorization[C]//Proeeedings of the Fourteenth Inter- national Conference on Machine Learning (ICML ' 97 ). 1997 412-420.
  • 8王爱平,徐晓艳,国玮玮,李仿华.基于改进KNN算法的中文文本分类方法[J].微型机与应用,2011,30(18):8-10. 被引量:7
  • 9Y Gao,P Jin-yan,F Gao. Improved Boosting Algorithm through Weighted K-Nearest Neighbors Classifier[C]//Proceedings, 3rd International Conference on Computer Seience and Information Technology(ICA2SIT). 2010 : 36-40.
  • 10董振东,董强.知网简介EEB/OL].http://www.Keenage-com,2012-7—23.

二级参考文献19

  • 1李莹,张晓辉,王华勇,常桂然.一种应用向量聚合技术的KNN中文文本分类方法[J].小型微型计算机系统,2004,25(6):993-996. 被引量:13
  • 2黎铭,薛晓冰,周志华.基于多示例学习的中文Web目录页面推荐[J].软件学报,2004,15(9):1328-1335. 被引量:17
  • 3张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:98
  • 4JOACHIMS T. Text categorization with support vector ma- chines: learning with many relevant features[C].In Proceed- ing of ECML-98, 10th European Conference on Machine Learning, Berlin : Springer-Ver-lag, 1998 : 137-142.
  • 5曹勇 吴顺祥.KNN文本分类算法中的特征选取方法研究.科技信息(科技·教研),2006,(12):26-28.
  • 6Yi-Ming Yang,Jan O Pederson.A Comparative Study on Feature Selection in Text Categorization[C].Proc.of 14th International Conference on Machine Learning (ICML-97),1997,412-420.
  • 7T E Dunning.Accurate methods for the statistics of surprise and coincidence[J].Computational Linguistics,1993,19(1),61-74.
  • 8M Utiyama and H Isahara.Large-scale text categorization (in Japanese)[C].9th Annual Meeting of the Association (Japan) for Natural Language Processing,2003,385-388.
  • 9B L Lu,K A Wang,M Utiyama and H Isahara.A part-versus-part method for massively parallel training of support vector machines[C],Proc.of International Joint Conference on Neural Networks (IJCNN04),Budapest,Hungary,July 26-29,2004.735-740.
  • 10B L Lu and M Ito.Task Decomposition and Module Combination Based on Class Relations:A Modular Neural Network for Pattern Classification[J].IEEE Trans.Neural Networks,1996,10(5),1244-1256.

共引文献55

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部