期刊文献+

Ridge Polynomial神经网络带动量项异步梯度算法的收敛性

Convergence of Asynchronous Gradient Method with Momentum for Ridge Polynomial Neural Networks
下载PDF
导出
摘要 将动量项引入到Ridge Polynomial神经网络异步梯度训练算法的误差函数中,有效地改善了算法的收敛效率,并从理论上分析了Ridge Polynomial神经网络的带动量项的异步梯度算法的收敛性,给出了算法的单调性和收敛性(包括强收敛性和弱收敛性)。算法的这些收敛性质对于如何选取学习率和初始权值来进行高效的网络训练是非常重要的。最后通过计算机仿真实验验证了带动量项的异步梯度算法的高效性和理论分析的正确性。 The momentum was introduced into the conventional error function of asynchronous gradient method to im- prove the convergence efficiency of Ridge Polynomial neural network. This paper studied the convergence of the asyn- chronous gradient method with momentum for training Ridge Polynomial neural network, and a monotonicity theorem and two convergence theorems were proved, which are important for choosing appropriate learning rate and initial weights to perform an effective training. To illustrate above theoretical finding, a simulation experiment was presented.
出处 《计算机科学》 CSCD 北大核心 2013年第12期116-121,共6页 Computer Science
基金 国家自然科学基金项目(61063045) 广西科技攻关项目(桂科攻11107006-1) 广西教育厅项目(TLZ100715)资助
关键词 RIDGE Polynomial神经网络 异步梯度算法 动量项 单调性 收敛性 Ridge polynomial neural networks, Asynchronous gradient algorithm, Momentum, Monotonicity, Conver- gence
  • 相关文献

参考文献17

  • 1Shin Y, Ghosh J. Approximation of Multivariate Functions U- sing Ridge Polynomial Networks [J]. Neural Networks, 1992, 2 : 380-385.
  • 2Shin Y,Ghosh J. Ridge Polynomial Networks [J]. 1EEE Trans- actions on Neural Networks, 1995,6(3):610-622.
  • 3Shin Y, Ghosh J. The pi-sigma network:an effcient higher-order neural network for pattern classification and function approxi- mation [J]. IEEE Transactions on Neural Networks, 1991, 1: 13-18.
  • 4Christodoulos V, Yiannis S B, Basil G M. Ridge polynomial net- works in pattern recognition [C]//4th EURASIP Conference focused on Video/Image Processing and Multimedia Communi- cations. 2003 : 519-524.
  • 5Ghazali R, Hussian A J, Liatsis P. Dynamic ridge polynomial neural network: forecasting the univariate non-stationary and stationary trading signal [J]. Expert Systems with Applica- tions, 2011,38 : 3765-3776.
  • 6Ghazali R, Hussian A J, Nawi N M, et al. Non-stationary and stationary prediction of financial time series using dynamic ridge polynomial neural network [J]. Neurocomputing, 2009, 72 ( 10- 12):2359-2367.
  • 7Hacib T, Bihan Y L, Mekideche M R, et al. Ridge polynomial neural network for non-destructive eddy current evaluation[J]. Studies in Compatational Ingelligenee, 2011,327 : 185-199.
  • 8Giles C L, Mzxwell T. Learning, invaricance, and generalization in a high-order neural network [J]. Applied Optics, 1987, 26 (23) : 4972-4978.
  • 9Rumelhart D E,McClelland J L. Parallel Distributed Processing Explorations in the microstructure of cognition [M]. Cam- bridge & MIT Press, 1986.
  • 10Durbin R, Rumelhart D E. Product units: A computationally powerful and biologically plausible extension to baekpropagation networks [J]. Neural Computation, 1989,1 : 133-142.

二级参考文献55

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部