期刊文献+

弧一致性符号ADD算法及在CSP求解中的应用 被引量:3

Symbolic ADD Algorithms for Arc Consistency and Application in Constraint Satisfaction Problem Solving
下载PDF
导出
摘要 约束满足问题(CSP)是人工智能领域中一个重要的研究课题,弧一致性(AC)技术是提高约束满足问题求解效率的一种有效技术。对传统弧一致性技术进行了改进,给出了弧一致性的符号代数决策图(ADD)算法并将其应用于CSP求解。传统弧一致性技术在压缩问题的搜索空间时,一次只能处理一条约束上的一个值对;而借助ADD技术来压缩问题搜索空间,可以一次处理多条约束。算法首先通过01编码将CSP问题描述成伪布尔函数,并由ADD进行表示。然后基于传统弧一致性技术的算法思想,利用ADD的交、并和提取操作来实现约束传播和变量域过滤。最后将弧一致性的符号ADD算法嵌入到BT搜索算法中来实现对CSP的求解。对标准库中的测试用例以及随机生成的测试用例进行了实验仿真,结果表明,该算法求解CSP的时间既优于带弧一致性维护的回跳算法MAC3+BJ和MAC2001+BJ,也优于采用传统数据结构进行预处理的CSP求解算法BT+MPAC和BT+MPAC*。 Constraint satisfaction problem (CSP) is an important research topic in the field of artificial intelligence, and arc consistency (AC) is an effective technology to improve the CSP solving efficiency. The symbolic algebraic decision diagram (ADD) algorithm for arc consistency was proposed here to improve the traditional arc consistency technology and was applied in CSP solving. In this paper,ADD was used to compress the search space. It can process multiple con- strains in one time, not as the traditional algorithm which can only deal with one value pair in a constraint per step. Fist- ly, CSP was described as pseudo-Boolean function by 01 coding and represented by ADD. Secondly, based on traditional arc consistency algorithm, the ADD operations intersection, union and abstraction were used to achieve constraint propa- gation and variable domain filtering. Finally, the symbolic algebraic decision diagram (ADD) algorithm for arc consisten- cy was embedded in BT search algorithm to solve the CSP. The result of experimental simulation to solve some prob- lems in benchmark and randomly generated test case shows that the efficiency is higher than backjumping algorithm maintained with AC, such as MAC3 +BJ and MAC2001 +B J, meanwhile the performance is better than algorithms BT +MPAC and BT+MPAC which is based on AC preproeess realized by traditional data structure in CSP solving.
出处 《计算机科学》 CSCD 北大核心 2013年第12期243-247,共5页 Computer Science
基金 国家自然科学基金(60963010 61100025 61262030) 广西研究生教育创新计划(2011105950812M23)资助
关键词 约束满足问题(CSP) 代数决策图(ADD) 弧一致性(AC) Constraint satisfaction problem(CSP), Algebraic decision diagram(ADD),Arc consistency(AC)
  • 相关文献

参考文献15

  • 1Marriot K,Stuekey P. Programming with constraints[M]. Cam- bridge: MIT Press, 1998.
  • 2Apt K. Principle of Constraint Programming [M]. Cambridge: Cambridge Press, 2003.
  • 3Prosser P. Hybrid algorithms for the constraint satisfaction problems[J]. Computational Intelligence, 1993,9 (3) : 268-299.
  • 4Ginsberg M L. Dynamic backtracking[J]. Artificial Intelligence, 1993,1,25-46.
  • 5Larrosa J, Schiex "i". Solving Weighted CSP by Maintaining Arc Consistency[J]. Artificial Intelligence, 2004,159(1/2) : 1-26.
  • 6Mackworth A K. Consistency in networks of relations[J]. Arti- ficial Intelligence, 1977,8(1) : 99-118.
  • 7Christian B,Charles R J. Refining the basic constraint propaga- tion algorithm[C]Proceedings of the 17th International Joint Conference on Artificial Intelligence. Seattle WA: Morgan Kauf- mann, 2001 : 309-315.
  • 8Mohr R, Henderson T C. Arc and path consistency revised[J]. Artificial Intelligence, 1986,28(2) 225-233.
  • 9Bryant R E. Symbolic Boolean Manipulation with Ordered Bina- ry Decision Diagrams[J]. ACM Computing Surveys, 1992, 24 (3) :293-318.
  • 10Bachar R I, Frohm E A, Gaona C M, et al. Algebraic Decision Diagrams and Their Applications[J]. Formal Methods in Sys- tems Design, 1997,10(2/3) : 171-206.

二级参考文献48

  • 1贺仁杰,谭跃进.加权约束满足问题的改进深度优先搜索算法[J].系统工程学报,2004,19(5):512-516. 被引量:5
  • 2徐周波,古天龙,赵岭忠.网络最大流问题的一种新的符号ADD求解算法[J].通信学报,2005,26(2):1-8. 被引量:15
  • 3Bachar R I, Frohm E A, Gaona C M, et al, Algebraic Decision Di- agrams and Their Applications. Formal Methods in Systems Design, 1997,10(2/3):171-206.
  • 4Hachtel G D, Somenzi F. A Symbolic Algorithm for Maximum Flow in 0-1 Networks. Formal Methods in System Design, 1997,10(2/3):207-219.
  • 5Chatalic P, Simon L. Multi-Resolution on Compressed Sets of Clauses//Proc of the 12th International Conference on Tools with Artificial Intelligence. Vancouver, Canada, 2000:2-10.
  • 6Pan Guoqiang, Vardi M Y. Symbolic Techniques in Satisfiability Solving.Journal of Automated Reasoning, 2005,35(1/3):25-50.
  • 7Larrosa J, Meseguer P. Exploiting the Use of DAC in Max-CSP// Proc of the 2nd International Conference on Principle and Practice of Constraint Programming. Cambridge, USA,1996:308-322.
  • 8Wallace R J. Directed Are Consistency Preprocessing// Proe of the Workshop on Constraint Processing. Berlin, Germany: Springer-Verlag,1995:121-137.
  • 9Larrosa J, Schiex T. Solving Weighted CSP by Maintaining Arc-Consistency. Artificial Intelligence, 2004, 159 (1/2):1-26.
  • 10Dechter R. Bucket Elimination: A Unifying Framework for Reason-ing. Artificial Intelligence,1999,113(1/2):41-85.

共引文献28

同被引文献10

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部