期刊文献+

细胞钙振荡模型的Hopf分岔与计算机仿真

Hopf Bifurcation Analysis and Computer Simulation of Cell Calcium Oscillation Model
下载PDF
导出
摘要 利用中心流形定理和分岔理论,研究了Borghans-Dupont模型平衡点分岔现象,揭示了钙振荡现象发生机理。通过对系统分岔现象的理论分析,不仅证明了Hopf分岔的存在,而且也说明了振荡现象产生和消失的主要原因来源于两个分别为超临界和亚临界的Hopf分岔。利用计算机仿真,绘制了系统平衡点分岔图、相图与时序图,验证了理论分析的正确性。 The bifurcation mechanisms of the Borghans-Dupont model of calcium oscillation were investigated. By apply- ing the centre manifold and bifurcation theory, a theoretical analysis of bifurcation in this model was first performed. The results not only exhibite the Hopf bifurcation but also show that the supercritical Hopf bifurcation and the subcriti- cal Hopf bifurcation play a great role in the calcium oscillations. Our computer simulations, including the bifurcation dia- gram of fixed points, the bifurcation diagram of the system in two dimensional parameter space and time series, have been plotted in order to illustrate the correctness of the theoretical and dynamical analysis.
出处 《计算机科学》 CSCD 北大核心 2013年第12期248-250,263,共4页 Computer Science
基金 国家自然科学基金项目(11202083) 安徽高校省级自然科学研究基金(KJ2013A240) 安徽省高校自然科学基金(KJ2013B260) 安徽高校省级自然科学研究项目(KJ2013Z309)资助
关键词 钙振荡 HOPF分岔 中心流形 平衡点 稳定性 极限环 Calcium oscillation, Hopf bifurcation, Centre manifold, Equilibrium, Stability, Limit cycle
  • 相关文献

参考文献3

二级参考文献38

  • 1高凤新,李亚平,李前树.细胞内钙离子体系中的双参数内信号随机共振[J].高等学校化学学报,2004,25(9):1727-1729. 被引量:4
  • 2Goldbeter A,Dupont G,Berridge M J.Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation[J].Proceedings of the National Academy of Sciences,1990,87:1461-1465.
  • 3Houart G,Dupont G,Goldbeter A.Bursting,Chaos and birhythmicity originating from self-modulation of the inositol 1,4,5-trisphosphate Signal in a model for intracellular Ca2+ oscillations[J].Bulletin of Mathematical Biology,1999,61:507-530.
  • 4Zhong S,Qi F,Xin H W.Internal stochastic resonance in a model system for intracellular calcium oscillations[J].Chemical Physics Letters,2001,342:583-586.
  • 5Jing Z J,Chang Y,Chen G R.Complex dynamics in a permanent-magnet synchronous motor model[J].Chaos,Solitons and Fractals,2004,22(4):831-848.
  • 6Jing Z J,Chang Y,Guo B L.Bifurcation and chaos in discrete FitzHugh:Nagumo system[J].Chaos,Solitons and Fractals,2004,21(3):701-720.
  • 7Wiggins S.Introduction to applied nonlinear dynamical systems and chaos[M].Berlink:Springer,1990:5-278.
  • 8Hopfield J. Neurons with graded response have collective computational properties like those of two-state neurons. In:Proc. Nat.Acad. Sci. USA, 1984,81: 3088~3092
  • 9Marcus C M,Westervelt R M. Stability of analog neural network with delay. Phys. Rev. A 1989,39:347~359
  • 10Olien L,Belair J. Bifurcations, stability and monotonicity properties of a delayed neural network model, Physica D 102,1997. 349 ~363

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部