期刊文献+

一种基于反馈模糊图论的视频多语义标注算法 被引量:1

Video Multi-semantic Annotation Algorithm Based on Feedback Fuzzy Graph Theory
下载PDF
导出
摘要 为了弥补视频语义检索中视频底层特征与高层语义概念之间的"语义鸿沟",提出了一种基于反馈模糊图论的视频多语义标注算法。该算法首先构造一个包括所有数据的时间和空间分布信息的小样本集,据此进行人工标注并将其作为训练集。然后将模糊算子引入图论中,将语义概念间的关系模糊化,以实现模糊推理。最后将标注完成的测试集中的样本加入到训练集中,以完成视频标注的反馈。实验结果表明,使用反馈的模糊图不仅可以很好地建立语义概念间的关系,还能提高视频标注的准确率,表现出良好的性能。 For bridging semantic gap between video low-level features and high-level semantic concepts in the semantic- based video retrieval system, the video multi-semantic annotation algorithm based on feedback fuzzy graph theory was proposed. First, a training set which includes most temporal and spatial distribution of the whole data is made up and it will achieve a satisfying performance even in the case of limited size of training set. Secondly, the fuzzy operators are ap- plied to graph theory to achieve fuzzy reasoning by using fuzzy semantic. Last, in order to finish the feedback of video annotation, some temples from the testing set that have finished annotation are selected and added into the training set. Experimental results indicate that feedback fuzzy graph not only sets up the relationship between semantic concepts well, but also improves the precision of annotation and shows good performance.
出处 《计算机科学》 CSCD 北大核心 2013年第12期270-275,共6页 Computer Science
基金 江苏省高校自然科学研究面上项目(11KJD520002) 常州市科技计划项目(CC20120030)资助
关键词 视频标注 模糊图 多语义标注 语义鸿沟 Video annotation, Fuzzy graph. Multi-semantic annotation, Semantic gap
  • 相关文献

参考文献16

  • 1Alexander G, Hauptmann. Lessons for the future from a decade of informedia video analysis research[J]. Image and Video Re- trieval Lecture Notes in Computer Science, 2005,3568:1-10.
  • 2黄树成,朱宇光,董逸生.基于半监督学习的数据流分类方法[J].计算机研究与发展,2007,44(z2):225-229. 被引量:1
  • 3Wang Meng, Hua Xian-sheng, Song Yam et al. Automatic video annotation by semi-supervised learning with kernel density esti- mation[C]//MULTIMEDIA"06 Proceedings of the 14th annual ACM international conference on Multimedia. 2006:967-976.
  • 4Liu Jing, Li Ming-jing, Ma Wei-ying, et al. An adaptive graphmodel for automatic image annotation[C] MIR' 06 Procee- dings of the 8th ACM International Workshop on Multimedia Information Retrieval. 2006 : 61-70.
  • 5Yeung M M,Yeo B L. Time-constrained and Clustering for seg- mentation of video into story units[C]//Proceedings of the 13th International Conference on Pattern Recognition. Vienna, 1996, 3 375-380 Tang.
  • 6Jin-hui, Hua Xian-sheng, Wang Meng, et al. Correlative Linear Neighborhood Propagation for video annotation[J]. IEEE transactions on systems, man, and cybernetics-part B cybernet- ics, 2009,39(2) : 409-416.
  • 7Wang Fei, Zhang Chang-shui. Label propagation through linear neighborhoods[J]. IEEE Transactions on Knowledge and Data Engineering, 2008,20 (1) : 55-67.
  • 8Saul L K, Rowels S T. Think globally, fit loeally: unsupervised learning of low demnsional manifolds[J]. The Journal of Ma- chine Learning Research, 2003,4 : 119-155.
  • 9Zha Zheng-jun, Mei Tao, Wang Jing-dong, et al. Graph-based semi-supervised learning with multi-label[J]. Journal of Visual Communication and Image Representation, 2009,20(2) : 97-103.
  • 10Jain R, Hong Ri-ehang, Yan Shni-cheng, et al. Image Annotation By kNN-Sparse Graph-based Label Propagation Over Noisily- Tagged Web Images[J]. ACM Transactions on Intelligent Sys-terns and Technology,2011,2(2) :111-115.

二级参考文献23

  • 1[1]B Babcock,S Babu,et al.Models and issues in data streams.In:Proc of ACM Symp on Principles of Database Systems.New York:ACM Press,2002.1-16
  • 2[2]W Fan.StreamMiner:A classifier ensemble-based engine to mine concept-drifting data streams.In:Proc of the 30th VLDB Conference.New York:ACM Press,2004.1257-1260
  • 3[3]G Hulten,L Spencer,et al.Mining time-changing data streams.In:Proc of Int'l Conf on Knowledge Discovery and Data Mining.New York:ACM Press,2001.97-106
  • 4[4]Z Jeremy,A Marcus.Using additive expert ensembles to cope with concept drift.In:Proc of Int'l Conf on Machine Learning.New York:ACM Press,2005.449-456
  • 5[5]B David,G Johannes,et al.Detecting change in data streams.In:Proc of Int'l Conf on Very Large Data Bases.New York:ACM Press,2004.180-191
  • 6[6]F Wei,Y Huang,et al.Active mining of data streams.In:Proc of the 4th SIAM Int'l Conf on Data Mining.Los Alamitos,CA:IEEE Computer Society Press,2004.457-461
  • 7[7]F Wei,Y Huang,et al.Decision tree evolution using limited number of labeled data items from drifting data streams.In:Proc of the 4th IEEE Int'l Conf on Data Mining.Los Alamitos,CA:IEEE Computer Society Press,2004.379-382
  • 8[8]K Nigam.Using unlabeled data to improve text classification:[Ph D dissertation].Pittsburgh:Carnegie Mellon University,2001
  • 9[9]A Blum,T Mitchell.Combining labeled and unlabeled data with co-training.In:Proc of the Workshop on Computational Learning Theory.New York:ACM Press,1998.92-100
  • 10[10]V Sindhwani,S S Keerthi.Large scale semi-supervised linear SVMs.In:Proc of Int'l Conf on Research and Development in Information Retrieval.New York:ACM Press,2006.477-484

共引文献3

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部