期刊文献+

情感学习中基于检测眨眼频率和贝叶斯网络的情感分类算法 被引量:3

Emotion Classification Algorithm Based on Blink Frequency Detection and Bayesian Network in Affective Learning
下载PDF
导出
摘要 针对情感学习中常用情感状态识别方法的局限性,研究了一种通过检测学习者眨眼频率来对学习过程中产生的情感状态进行分类的方法。该方法首先根据学习者的眨眼频率将其情感状态分为正向情感或者负向情感,然后再通过贝叶斯网络根据学生信息及教学活动的上下文信息将负向情感进一步解析为具体的负向情感状态。将该分类算法应用到一个以教学视频为主体学习资源的电子学习平台,以验证其有效性。 This paper explored an emotional state classification algorithm through detecting the learner's blink frequen- cy during a learning process. This algorithm could classify the learner's emotional states into positive emotional state and negative emotional state. And the negative emotional categories could be inferred by a Bayesian network using the parameters about the student's personal information and the learning context information. An e-learning system using instructional videos as the core learning material was developed to validate this classification algorithm.
出处 《计算机科学》 CSCD 北大核心 2013年第12期287-291,共5页 Computer Science
基金 国家自然科学基金项目(51365010) 广西高等学校立项科研项目(201204LX177)资助
关键词 眨眼检测 贝叶斯网络 情感分类 情感学习 Blink detection, Bayesian network, Emotion classification, Affective learning
  • 相关文献

参考文献20

  • 1Pieard R,Papert S,Bender W,et al. Affective learning--A mani- festo [J]. BT Technology Journal, 2004,22(4) : 253-69.
  • 2ShenL, WangM, ShentL Affectivee-leaming: Using "emotional" data to improve learning in pervasive learning environment [J]. Educational Technology& Society,2009,12(2):176-89.
  • 3王晓伟,王志良.基于人工心理的E-learning辅助系统[J].微计算机信息,2006,22(05Z):275-277. 被引量:7
  • 4D mello S K, Craig S D,Witherspoon A, et al. Automatic detec- tion of learner's affect from conversational cues FJ']. User Mo- deling and User-Adapted Interaction, 2008,18(1) : 45-80.
  • 5Whitehill J, Bartlett M, Movellan J. Automatic facial expression recognition for intelligent tutoring systems[C]//Proceedings of the Computer Vision and Pattern Recognition Workshops. IEEE, 2008.
  • 6Kessous L, Castellano G, Caridakis G. Multimodal emotion rec- ognition in speech-based interaction using facial expression, body gesture and acoustic analysis [J]. Journal on Muhimodal User Interfaces, 2010,3 ( 1 ) : 33-48.
  • 7乔向杰,王志良,王万森.基于OCC模型的E-learning系统情感建模[J].计算机科学,2010,37(5):214-218. 被引量:16
  • 8Lee C C, Mower E, Buo C, et al. Emotion recognition using ahierarchical binary decision tree approach [J]. Speech Communi- cation, 2011,53(9/10) ; 1162-1171.
  • 9Tecce J J. Psychology, physiological and experimental [Eye- blinks and psychological functions] (6th ed)[M//McGraw-Hill Yearbook of Science and Technology. NY: McGraw-Hill, 1992: 375-377.
  • 10Harrigan J A, O' connell D M. How do you look when feeling anxious? Facial displays of anxiety [J]. Personality and Indivi- dual Differences, 1996,21 (2) : 205-212.

二级参考文献19

  • 1韩相军,关永,王雪立,王万森.基于DSP的实时人脸检测系统[J].微计算机信息,2005,21(12Z):82-84. 被引量:7
  • 2Picard R W, Papert S, Bender W, et al. Affective Learning - A Manifesto[J]. BT Technology Journal, 2004,22 (4) : 253-269.
  • 3Burleson W. Affective Learning Companions: Strategies for Empathetic Agents with Real-time Multimodal Affective Sensing to Foster Meta-Cognitive and Meta-affective Approaches to Learning, Motivation and Perseverance[D]. Massachusetts Institute of Technology, 2006.
  • 4Lisetti C L, Nasoz F. MAUI: A Multimodal Affective User Interface[C]//Proceedings of the 10th ACM International Conference on Multimedia. New York, NY, USA: ACM Press, 2002 : 161-170.
  • 5Bercht M, Viccari R. Pedagogical agents with affective and cognitive dimensions[C]//Proceedings of the Congreso Iberoamericnao de Informatiea Educativa. Vina del Mar,2000.
  • 6Kapoor A, Picard R W, lvanov Y. Probabilistie Combination of Multiple Modalities to Detect Interest[J].ICPR, 2004 (3):969- 972.
  • 7Neji M, Ben Ammar M. Agent-based Collaborative Affective e- Learning Framework[J]. The Electronic Journal of e-Learning, 2007,5 (2) : 123-134.
  • 8Ben Ammar M,Neji M,Alimi A M. The integration of an emotional system in the Intelligent Tutoring System[C]//Computer Systems and Applications, The 3rd ACS/IEEE International Conference,2005:145.
  • 9Mota S. Automated posture analysis for detecting learner's affectire state[D]. MIT,2002.
  • 10Abhasi A R. A Bayesian Network Approach to Interpret Affect-An Application to Affective Tutoring[C]//Proceedings of Doctoral Consortium in 2nd Conference on Affective Computing and Intelligent Interaction. Lisbon,Portugal,Sep. ,2007.

共引文献21

同被引文献42

  • 1谢洪明,张颖,程聪,陈盈.网络嵌入对技术创新绩效的影响:学习能力的视角[J].科研管理,2014,35(12):1-8. 被引量:37
  • 2马伟群,姜艳萍,康壮.知识管理中个体知识能力的一种模糊测评方法[J].东北大学学报(自然科学版),2004,25(7):711-714. 被引量:19
  • 3张庆生,齐勇,侯迪,赵季中.基于隐马尔科夫模型的上下文感知活动计算[J].西安交通大学学报,2006,40(4):398-401. 被引量:4
  • 4PICARD R, PAPERT S, BENDER W, et al. Affective learning: amanifesto [J]. BT Technology Journal,2004,22(4) :253-269.
  • 5LEE C C, MOWER E, BUSSO C, et al. Emotion recognition using a hierarchical binary decision tree approach[ J]. Speech Communica- tion,2011,53(9-10) :1162-1171.
  • 6SUN Duo, LU Xue-song. An e-Learning system based on affective computing[ J]. Physics Procedia ,2012,24 : 1893-1898.
  • 7NECHES R, FIKES R E, FININ T, et al. Enabling technology for knowledge sharing[J]. AI Magazine,1991,12(3) :36-56.
  • 8HOWARD R A, MATHESON J E. Influence diagrams[ J]. Decision Analysis,2005,2 (3) : 127-143.
  • 9ROBISON J L, MCQUIGGAN S W, LESTER J C. Modeling task- based vs. affect-based feedback behavior in pedagogical agents : an in- ductive approach[ C]//Proc of the 14th International Conference on Artificial Intelligence in Education; 2009.
  • 10ROBISON J, MCQUIGGAN S, LESTER J. Developing empirically based student personality profiles for affective feedback models [ C ]// Proc of the 10th International Conference on Intelligent Tutoring Sys- tems. Berlin : Springer,2010 : 285- 295.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部