期刊文献+

基于协方差的高斯混合模型参数学习算法 被引量:4

Covariance Based Learning Algorithm for Gaussian Mixture Model
下载PDF
导出
摘要 对混合高斯模型参数估计问题的算法通常是基于期望最大(Expectation Maximization)给出的。在混合高斯模型的因素协方差矩阵已知、因素各分量独立的前提下,给出了基于协方差矩阵的机器学习算法,简称CVB(Covariance Based)算法,并进行了一定的数学分析。最后给出了与期望最大算法的实验结果比较。实验结果表明,在该条件下,基于协方差的算法优于期望最大算法。 Expectation maximization is commonly used for parameter estimation in Gaussian mixture model. This paper presented a machine learning algorithm based on covariance(CVB) for solving the Gaussian mixture model with the specific constrain that eovariance is already known. Experiments show that the CVB algorithm has better performance than the EM algorithm with regard to the specific constraint.
出处 《计算机科学》 CSCD 北大核心 2013年第11A期77-81,共5页 Computer Science
基金 深圳市战略性新兴产业发展专项资金基础研究重点项目:海量恶意软件鉴别关键技术及其在钓鱼网站检测中的应用(JCYJ20120 617120716224) 江西省教育厅青年科学基金项目:双模态概率主题模型及基于DOT的并行扩展研究(GJJ13013)资助
关键词 混合高斯模型 期望最大化 协方差 CVB算法 Gaussian mixture model,Expectation maximization,Covariance based,CVB algorithm
  • 相关文献

参考文献16

  • 1Martinez B, Binefa X, Pantie M. Facial component detection in thermal imagery[C] ff Proceedings of the Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Com- puter Society Conference. June 2010 z 48-54.
  • 2McKenna S J, Gong Shao-gang, Raja Y. Modelling Facial Colour and Identity with Gaussian Mixtures[J]. Pattern Recognition, 1998,31 (12) : 1883-1892.
  • 3Figueiredo M. Bayesian Image Segmentation Using Gaussian Field Priors[M]//Rangarajan A, Vemuri B, Yuille A. Energy Minimization Methods in Computer Vision and Pattern Recogni- tion. Berlin, Heidelberg: Springer, 2005 : 74-89.
  • 4Chad C, Serge B, Hayit G, et al. Blobwodd: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying[J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2002,24:1026-1038.
  • 5Greenspan H, Ruf A,Goldberger J. Constrained Gaussian mix- ture model framework for automatic segmentation of MR brain images[J]. IEEE Transactions on Medical Imaging, 2006, 25 (9):1233-1245.
  • 6向日华,王润生.一种基于高斯混合模型的距离图像分割算法[J].软件学报,2003,14(7):1250-1257. 被引量:54
  • 7陈允杰,张建伟,韦志辉,夏德深,王平安.基于高斯混合模型的活动轮廓模型脑MRI分割[J].计算机研究与发展,2007,44(9):1595-1603. 被引量:13
  • 8Reynolds D A, Rose R C. Robust text-independent speaker iden- tification using Gaussian mixture speaker models [J]. IEEE Transactions on Speech and Audio Processing, 1995,3 (1) .. 72-83.
  • 9Reynolds D A, Quatieri T F, Dunn R B. Speaker Verification U- sing Adapted Gaussian Mixture Models[J]. Digital Signal Pro- cessing, 2000,10(1-3) : 19-41.
  • 10张怡颖,朱小燕,张钹.与文本无关的说话人自适应确认方法[J].软件学报,2000,11(6):798-803. 被引量:4

二级参考文献27

  • 1刘扬,黄庆明,高文,叶齐祥.自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J].计算机研究与发展,2006,43(7):1207-1215. 被引量:18
  • 2Jiang XY, Bunke H. Edge detection in range images based on scan line approximation. Computer Vision and Image Understanding,1999,73(2): 183~ 199.
  • 3Hoover A, Jean-Baptiste G, Jiang XY, Flynn PJ, Bunke H, Goldgof DB, Bowyer K, Eggert DW, Fitzgibbon A, Fisher RB. An experimental comparison of range image segmentation algorithms. IEEE Transactions on PAMI, 1996,18(7):673--689.
  • 4Hoffman R, Jain AK. Segment and classification of range images. IEEE Transactions on PAMI, 1996,9(5):608---620.
  • 5Bihnes JA. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. 1998. http://ssli.ee.washington.edu/people/bihnes/mypapers/em.ps.gz.
  • 6Redner RA, Walker HF. Mixture density, maximum likelihood and the EM algorithm. SIAM Review, 1984,26(2):195~239.
  • 7Hoover A, Powell MW. Range image segmentation comparison project. Department of Computer Science and Engineering,University of South Florida, 1996. http://marathon.csee.usf.edu/range/seg-comp/SegComp.html.
  • 8Raflery AE. Approximate Bayes factors and accounting for model uncertainty in generalizes linear model. Technical Report, 1993.http://www.stat.washington.edu/www/research/reports/1993/tr255 .ps.
  • 9Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Technical Report,1998. http://www.stat.washington.edu/www/research/reports/1998/tr329.ps.
  • 10Buhmann/M. Data clustering and learning. 2002. http://www-dbv.cs.uni-bonn.de,/pdf/buhmann.hobtann02.pdf.

共引文献88

同被引文献21

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部