期刊文献+

Choquet积分的模糊化扩展Ⅱ型

Type Ⅱ Fuzzification on Choquet Integral
下载PDF
导出
摘要 重点讨论Choquet积分的II型模糊化扩展形式。相对于Choquet积分的模糊化扩展I型,II型扩展支持模糊数的被积函数,并给出精确数的积分结果。基于带符号的模糊测度,分别讨论了Choquet积分的模糊化扩展II型的计算方法和相关算法。并用实例说明:Choquet积分的模糊化扩展II型作为一种聚合工具在处理涉及非精确数的数据挖掘问题(例如:推理和回归问题)上的实用价值。 This paper provided a detailed discussion on one fuzzification of Choquet integral which supports fuzzy-valued integrand and gave crisp-valued integration result. It is a generalized Choquet integral for fuzzy-valued integrand, inter- val-valued integrand, as well as the crisp-valued integrand. The presented generalized Choquet integral with respect to signed fuzzy measure can act as an aggregation tool which is especially useful in many information fusing and data mining problems (such as regression and decision making) where not only crisp data but also heterogeneous fuzzy data are involved.
作者 杨蓉 郑三元
出处 《计算机科学》 CSCD 北大核心 2013年第11A期105-108,124,共5页 Computer Science
基金 国家自然科学基金项目(61105044)资助
关键词 CHOQUET积分 模糊数 模糊测度 聚合 Choquet integral, Fuzzy data, Fuzzy measure, Aggregation
  • 相关文献

参考文献14

  • 1Choquet G. Theory of Capacities [J]. Annales de 1' Institut Fou- rier, 5 .. 131-295.
  • 2Halmos P R. Measure Theory [M]. New York: Springer-Verlag New York Ine, 1974:324.
  • 3Murofushi T, Sugeno M, Machida M. Non Monotonic Fuzzy Measures and the Choquet Integral [J]. Fuzzy Sets and Sys- tems, 1994,64 : 73-86.
  • 4Wang Z, Klir G J. Fuzzy Measure Theory [M]. New York: Springer-Verlag New York Ine, 1992:363.
  • 5Leung K S,Wong M L, Lam W, et al. Learning Nonlinear Multi- regression Networks Based on Evolutionary Computation [J]. IEEE Transaction on Systems, Man and Cybernetics, Part B, 2002,32 : 630-644.
  • 6Xu K,Wang Z, Leung K S. Classification by Nonlinear Integral Projections [J]. IEEE Transaction on Fuzzy Systems, 2003,11: 187-201.
  • 7Wang Z. A new genetic algorithm for nonlinear multiregressions based on generalized Choquet integrals [C]//Proceedings on 12th IEEE International Conference on Fuzzy Systems, 2003. 2003,2..819-821.
  • 8Buekley J J, Eslami E. An Introduction to Fuzzy Logic and Fuzzy Sets[M]. Physiea-Verlag Heidelberg, 2002 : 296.
  • 9陶长琪,凌和良.基于Choquet积分的模糊数直觉模糊数多属性决策方法[J].控制与决策,2012,27(9):1381-1386. 被引量:15
  • 10刘阳桥,高濂,孙静,郭景坤.丙烯酸类共聚物对纳米Y-TZP水悬浮液性质的影响[J].高等学校化学学报,2001,22(10):1738-1740. 被引量:9

二级参考文献63

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部