摘要
提出一种非线性、自适应、基于完整上下文的梯度调整预测算子FCGAP。FCGAP适用于图像可逆数据隐藏算法。在FCGAP中,目标像素的预测值等于4邻域像素值的加权平均,加权系数由与目标像素最近距离的12近邻确定。采用FCGAP,提出一种高容量低失真的可逆数据隐藏算法。实验结果表明,FCGAP能充分利用上下文信息,提高像素预测精度,基于FCGAP提出的可逆数据隐藏算法相比已有可逆数据隐藏算法具有更好的容量-失真性能。
We propose a nonlinear, adaptive, gradient-adjusted predictor based on full context (FCOAP). FCGAP is suitable for reversible image data hiding. In FCA3AP, the predicted value of target pixel is equal to the weighted average of 4 neighborhood pixels, and the weighted coefficients are computed by 12 nearest neighbor pixels. Based on FCGAP, a reversible data hiding is proposed, which can provide high data embedding capacity and low distortion. Experimental resuits demonstrate that FCGAP can more fully utilize context information, and has better prediction accuracy of pixels than other predictors;the reversible data hiding based on FCGAP has better capacity-distortion performance compared with other state-of-the-art algoritlmas.
出处
《计算机科学》
CSCD
北大核心
2013年第11A期219-223,共5页
Computer Science
基金
国家自然科学基金项目(61070090
61003270)
国家自然科学基金广东省联合基金项目(U1035004)
广东省重大科技专项基金(2010A080402005)资助
关键词
可逆数据隐藏
无损数据隐藏
可逆图像水印
预测误差扩展
完整上下文预测
Reversible data hiding, Lossless data hiding, Reversible image watermarking, Prediction error expansion, Full context prediction