摘要
本文首先通过在三个限制变量(M1月环比增长率、CPI月环比增长率和银行间市场回购利率)之中选取变量来构建预测模型,检验中国股票市场的可预测性在统计上是否显著;之后将交易成本和各种交易限制纳入考虑,通过最大化投资者效用,基于不同的预测模型进行实时环境下的资产组合配置,并考察统计显著性和投资绩效之间的关系。研究表明,中国股市超额收益与M1月环比增长率之间具有稳定而显著的线性关系。在短期内,统计显著性与优化的投资绩效之间并非完全相关,而长期内,依据M1月环比增长率构建预测模型的投资策略可能带来良好的绩效。
In this paper,we construct forecasting models based on three variables( M1 growth rate,CPI growth rate,and interbank market repo rate),and test the statistical significance of the predictability of the excess returns of China's stock market. Then,we make asset allocation based on the forecasting models by maximizing investor's expected utility function,and examine the relation between statistical significance and portfolio performance. We conclude that the excess return could be partially predicted by M1 growth rate. The empirical results also show that statistical significance doesn't lead to improved performance in short period,while it is a good choice in the long run to make asset allocation according to M1 growth rate in roll-over method.
出处
《复旦学报(社会科学版)》
CSSCI
北大核心
2013年第6期107-119,179,共13页
Fudan Journal(Social Sciences)
基金
国家自然科学基金项目"公开信息冲击下的投资者交易策略高阶期望及其实证分析"(项目批准号:70671027)的资助
关键词
超额收益
可预测性
资产配置
投资绩效
excess return
predictability
asset allocation
investment performance