期刊文献+

混合排列向列相液晶薄盒中-1/2向错引起的有序重构的扩散 被引量:3

Diffusion of order reconstruction induced by-1/2 wedge disclination in a thin hybrid nematic liquid-crystal cell
原文传递
导出
摘要 基于Landau-de Gennes理论,利用松弛迭代法,研究了混合排列向列相液晶薄盒中1/2向错引起的有序重构的扩散现象,给出了1/2向错的核结构、双轴性结构,以及盒厚减小时有序重构的扩散.当盒厚小于15ξ时,随着盒厚的减小,向错范围和有序重构区域沿基板方向迅速扩散;当盒厚减小到临界厚度10ξ时,有序重构的范围扩散到整个液晶盒中,以向错中心所对应的平面为界,指向矢一部分垂面排列,另一部分沿面排列.本文的研究对拓扑缺陷对向列相液晶中的亚微米胶体粒子的调节作用具有一定的理论指导意义. Based on the Landau-de Gennes theory, the diffusion of order reconstruction induced by?1/2 wedge disclination in a thin hybrid cell is investigated by the relaxation iterative method. The core structure, the biaxial structure, and the diffusion of order reconstruction as the cell thickness decreases, are explored. The defect structure and the range of order reconstruction do not change when the cell thickness is larger than 15ξ. As the thickness decreases from 15ξ, the defect range broadens along the substrate direction, and the biaxial region as well as the range of order reconstruction also enlarges. When the thickness further decreases to below the critical value of 10ξ, the biaxial region and the order reconstruction range merge into an entire cell, where the planar orientation is abruptly converted into the perpendicular one across the biaxial wall. The results obtained in this paper are important for further studying the regulating effect of topological defect on submicron colloidal particles in nematics.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第22期319-326,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11374087) 河北省高等学校科学技术研究指导项目(批准号:Z2011133)资助的课题~~
关键词 混合排列向列相液晶薄盒 -1 2向错 有序重构扩散 松弛迭代法 thin hybrid nematic liquid-crystal cell, - 1/2 wedge disclination, diffusion of order reconstruction, re-laxation iterative method
  • 相关文献

参考文献24

  • 1郭建成, 郭海成 2000 物理学报 49 1995.
  • 2邓舒鹏, 李文萃, 黄文彬, 刘永刚, 彭增辉, 鲁兴海, 宣丽 2011 物理学报 60 066103.
  • 3岱钦, 李勇, 乌日娜, 耿岳, 全薇, 李业秋, 彭增辉, 姚丽双 2013 物理学报 62 044219.
  • 4Kurik M V, Lavrentovich O D 1988 Sov. Phy. Usp. 31 196.
  • 5Takuya O, Jun-ichi F, Kosuke S, Tomohiko Y 2012 Phys. Rev. E 86 030701(R).
  • 6Reichenstein M, Stark H, Stelzer J, Trebin H R 2001 Phys. Rev. E 65 011709.
  • 7Tiribocchi A, Gonnella G, Marenduzzo D, Orlandini E 2010 Appl. Phys. Lett. 97 143505.
  • 8Mermin N D 1979 Rev. Mod. Phys. 51 591.
  • 9Yang G H, Zhang H, Duan Y S 2002 Chin. Phys. 11 415.
  • 10Gennes P G, Prost J 2008 The Physics of Liquid Crystals (2nd Ed.) (Beijing: Science Press) p166, 171, 165.

同被引文献63

  • 1张志东,姜丽,魏怀鹏.反扭曲向列相液晶盒中的引流(英文)[J].计算物理,2006,23(2):199-203. 被引量:3
  • 2Kaiser J, Degen C, Els?sser W 2002 J. Opt. Soc. Am. B 19 672.
  • 3Law J Y, Agrawal G P 1997 IEEE Photon. Technol. Lett. 9 437.
  • 4Tayahi M B, Lanka S, Wang J, Catsten J, Hofmann L, Sukanta S 2006 Proc. of SPIE 6132 61320B.
  • 5Vogel P, Ebert V 2001 Appl. Phys. B 72 127.
  • 6Ostermann J M, Rinaldi F, Debernardi P, Michalzik, R 2005 IEEE Photon. Technol. Lett. 17 2256.
  • 7Yan Z, Lin C H, Coldren L A 2011 IEEE Photon. Technol. Lett. 23 305.
  • 8Li S, Guan B L, Shi G Z, Guo X 2012 Acta Phys. Sin. 61 18 (in Chinese).
  • 9Boutami S, Benbakir B, Leclercq J L, Viktorovitch P 2007 Appl. Phys. Lett. 91 071105.
  • 10Ostermann J M, Debernardi P, Jalics C, Kroner A, Riedl M C, Michalzik R 2005 Opt. Commun. 246 511.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部