期刊文献+

掺杂V对LiNH_2解氢性能的第一原理计算 被引量:1

First Principle Calculation of Doped V Dehydrogenating Properties of LiNH_2
下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理赝势平面波方法,研究了V元素掺杂对LiNH2的电子结构和解氢性能的影响。计算结果显示,V元素掺杂LiNH2晶体模型的负合金形成热减少,LiNH2体系结构的稳定性减弱,合金化增强了体系的解氢能力。Mulliken集居数、电子态密度与电子密度的进一步分析发现:掺杂V以后,通过电荷补偿,N与H之间离子性相互作用增强,共价性相互作用减弱;费米能级(EF)处键峰值增大,能隙ΔEH-L变窄,LiNH2的解氢能力提高。 Using the plane waves ultrasoft pseudopotential method based on the first principles of DFT, the in- fluence of doping V on the electronic structure and dehydrogenation properties of LiNH2 was studied. The results show that the negative heat of formation there are weaken the structural stability, alloying elements befit to improve the de- hydrogenating properties of LiNH2. After comparing the mulliken populations and the densities of states and the charge distribution, it is found that the catalysis effect of V on dehydrogenating kinetics of LiNH2 may attribute to the changes of N and H between ionic interaction is enhanced and covalent interaction weakened, the Fermi level (EF) place peak value of bond are increased and the energy gap near the Fermi levelΔE,-L are narrows.
出处 《材料导报》 EI CAS CSCD 北大核心 2013年第20期156-160,共5页 Materials Reports
基金 国家自然科学基金(51175165) 湖南省张家界航空工业职业技术学院项目(ZHKT2011-020)
关键词 赝势平面波 LiNH2 合金形成热 电子结构 解氢性能 pseudopotential plane-wave, LiNHz, heat of formation, electronic structure, dehydrogenationproperties
  • 相关文献

参考文献2

二级参考文献32

  • 1Chen P., Xiong Z.T., Luo J., Lin J, and Tan K., hatemction of hydrogen with metal nitrides and imides, Nature, 2002, 420 (21): 302.
  • 2Sakintunaa B., Lamari-Darkrimb F., and Hirscherc M., Metal hydride materials for solid hydrogen storage: a review, Int. J. Hydrogen Energy, 2007, 32:1121.
  • 3Chert P., Xiong Z.T., Wu G.T., Liu Y.F., Hu J.J., and Luo W.F., Metal-N-H systems for the hydrogen storage, Scripta Mater., 2007, 56 (10): 817.
  • 4Luo W., (LiNH2 MgH2): a viable hydrogen storage system, J. Alloys Compd., 2004, 381 (1-2): 284.
  • 5Luo W. and Sickafoose S., Thermodynamic and structural characterization of the Mg-Li-N-H hydrogen storage system, J. Alloys Compd., 2006, 407 (1-2): 274.
  • 6Luo W., Wang J., Stewart K., Cliff M., and Gross K., Li-Mg-N-H: Recent investigations and development, J. Alloys Compd., 2007, 446-447 (31): 336.
  • 7Leng H., Ichikawaa T., Isobeb S., Hanadab N., and Fujii H., Desorption behaviours from metal-N-H systems synthesized by ball milling, J. Alloys Compd., 2005, 404-406 (8): 443.
  • 8Ichikawaa T., Hanadab N., Isobeb S., Lenga H.Y., and Fujii H., Hydrogen storage properties in Ti catalyzed Li-N-H sys- tem, J. Alloys Compd, 2005, 404-406 (8): 435.
  • 9Chen Y., Wang P., Liu C., and Cheng H.M., Improved hydrogen storage performance of Li-Mg-N-H materials by optimizing composition and adding single-walled carbon nanotubes, Int. J. Hydrogen Energy, 2007, 32 (9): 1262.
  • 10Chen Y., Wu C.Z., Wang P., and Cheng H.M., Structure and hydrogen storage property of ball-milled LiNH2/MgH2 mixture, lnt. J. Hydrogen Energy, 2006, 31 (9): 1236.

共引文献11

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部