摘要
为了解决大数据环境下快速求解数据场势值的计算效率问题,基于膜计算领域的酶数值P系统(ENPS),提出一种数据场分析方法。该方法先引入转移P系统对ENPS加以改进,以提高后者的流程可控性,再基于改进的系统给出计算大数据场势值的ENPS的具体实现。P系统的极大并行性导致大数据场势值求解在3步内完成,每个步骤的计算时间为常数,且与数据规模无关。在真实人脸图像数据场上的实验结果验证了此方法的高效性。
:An approach to analyze data field was proposed to compute the data field potential in the setting of big data based on the en- zymatic numerical P system(ENPS) which is a novel membrane computing device. At first, this approach employed the transition P system to improve the ENPS so as to enhance the controllability of processes. Then, the improved ENPS was taken into account to de- sign a P system for calculating the potential of big data field. The maximum parallelism of the P system resulted in the accomplishment of calculation on the potential of big data field only in three steps. The running time within each step was constant and independent to the data scale. Experimental results on real data field from face images verified the effectiveness of the proposed method.
出处
《四川大学学报(工程科学版)》
EI
CAS
CSCD
北大核心
2013年第6期96-104,共9页
Journal of Sichuan University (Engineering Science Edition)
基金
国家自然科学基金资助项目(61370083
61073043
61073041)
高等学校博士学科点专项科研基金项目(20112304110011
20122304110012)
黑龙江省自然科学基金项目(F200901)
哈尔滨市科技创新人才研究专项资金项目(2011RFXXG015)
关键词
数据场
大数据
膜计算
酶数值P系统
data field
big data
membrane computing
enzymatic numerical P system