期刊文献+

非线性对流扩散方程的隐-显hp-局部间断Galerkin有限元方法 被引量:2

Implicit-explicit hp-local discontinuous Galerkin finite element method for nonlinear convection diffusion problems
下载PDF
导出
摘要 使用Arnold等人提出的求解椭圆方程的间断有限元的一般框架及新的处理非线性对流项的方法,得到了非线性对流扩散方程的全离散隐-显hp-LDG方法的误差估计.对粘性Burgers方程进行了数值计算,计算结果验证了文中得到的理论结果并表明隐-显hp-LDG格式可使用比显式hp-LDG格式更大的时间步长. By using the general framework introduced by Arnod et al. and the new method dealting with the nonlinear convection term, the error estimates of implicit-explicit hp-LDG method for nonlinear convection diffusion problems are obtained. The numerical example for the nonlinear Burgers equation is presented in the paper. The numerical results verify the theoretical results obtained in this paper and demonstrate that implicit-explicit hp-LDG scheme can use much larger time step than explicit hp-LDG scheme.
作者 由同顺
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2013年第4期447-456,共10页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
关键词 对流占优扩散方程 隐-显hp-LDG方法 提升算子 误差估计 convection diffusion equation implicit-explicit hp-LDG method lifting operator error estimates
  • 相关文献

参考文献12

  • 1Arnold D N, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM J Numer Anal, 2001, 39: 1749-1779.
  • 2Cockburn B, Karniadakis G, Shu C W. Discontinuous Galerkin Methods. Theroy, Computation and Applications[A]. Lecture Notes in Computational Science and Engineering, Vol. 11 [C]. Berlin: Springer Verlag, 2000.
  • 3Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convectiondominated problem[J]. J Sci Comput, 2001, 16: 173-261.
  • 4Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systerms[J]. SIAM J Numer Anal, 1998, 35: 2440-2463.
  • 5由同顺.非线性对流扩散问题的hp-局部间断Galerkin有限元方法[J].工程数学学报,2012,29(6):894-906. 被引量:4
  • 6Perugia I, Schotzau D. An hp-analysis of the local discontinuous Galerkin method for diffusion problems[J]. J Sci Comput, 2002, 17: 561-571.
  • 7Perugia I, Schotzau D. The hp-Iocal discontinuous Galerkin method for low-frequency timeharmonic Maxwell equations[J]. Math Comp, 2003, 72: 1179-1214.
  • 8Dolejsi V, Feistauer M, Sobotikova V. Analysis of the discontinuous Galerkin methods for nonlinear convection-dominated problems[J]. Comput Methods Appl Mech Eng, 2005, 194: 2709-2733.
  • 9Cockburn B, Shu C W. The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems[J]. J Comput Phys, 1998, 141: 199-224.
  • 10Brezzi F, Manzini G, Marini D, et al. Discontinuous Galerkin approximations for elliptic problems[J]. Numer Methods for Partial Differential Equations, 2000, 16: 365-378.

二级参考文献22

  • 1Arnold D N. An interior penalty finite element method with discontinuous elements[J]. SIAM Journal on Numerical Analysis, 1982, 19(4): 742-760.
  • 2Arnold D N, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM Journal on Numerical Analysis, 2001, 39(5): 1749-1779.
  • 3Bassi F, Rebay S. A high-order accurate discontinuous finite element methods for the numerical solution of the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1997, 131(2): 267-279.
  • 4Cockburn B, Karniadakis G, Shu C W. Discontinuous Galerkin Methods, Theroy, Computation and Ap- plications[M]. Lecture Notes in Computational Science and Engineering, Vol. 11, Springer Verlag, 2000.
  • 5Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-dominated prob- lems[J]. Journal of Scientific Computing, 2001, 16(3): 173-261.
  • 6Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems[J]. SIAM Journal on Numerical Analysis, 1998, 35(6): 2440-2463.
  • 7Cockburn B, Dawson C. Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions[C]// Proceedings of the Conference on the Mathematics of Finite Elements and Applications: Mafelap X, Elsevier, 2000:225-238.
  • 8Castillo P, et al. Optimal a priori error estimates for the hp-version of convection-diffusion problems[J]. Mathematics of Computation, 2002, 71(238): 455-478.
  • 9Perugia I, Sch6tzau D. The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations[J]. Mathematics of Computation, 2003, 72(243): 1179-1214.
  • 10Perugia I, SchStzau D. An hp-analysis of the local discontinuous Galerkin method for diffusion problems[J]. Journal of Scientific Computing, 2002, 17(1-4): 561-571.

共引文献3

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部