期刊文献+

基于修正的Kleene蕴涵的模糊描述逻辑

Fuzzy description logic based on the revised Kleene implication
下载PDF
导出
摘要 基于三角模的模糊描述逻辑的提出,使得模糊描述逻辑的框架更一般化,为知识处理提供了更理想的方法.在此基础上,提出基于修正的Kleene蕴涵的模糊描述逻辑,在建立该模糊描述逻辑的语法,语义与知识库形式后,进一步讨论相关的推理问题,包括这个逻辑中的可满足性问题,Tableau算法及一致性问题. The t-norm based fuzzy description logic makes fuzzy description logic framework more general. In this paper, based on the t-norm based fuzzy description logic and the revised Kleene implication, the fuzzy description logic based on the revised Kleene implication is proposed. In this logic the related theories of the nilpotent minimum fuzzy logic and fuzzy description logic are combined organically, and the corresponding properties, such as syntax, semantics and reasoning problems are discussed in detail.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2013年第4期457-465,共9页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11171308)
关键词 模糊描述逻辑 修正的Kleene蕴涵 可满足性 一致性 TABLEAU算法 fuzzy description logic R0 implication operator revised Kleene implication satisfiability consistency Tableau algorithm
  • 相关文献

参考文献9

  • 1Baader F, Calvanese D. The Description Logic Handbook: Theory, Implementation, and Applications[M]. London: Cambridge University Press, 2003.
  • 2Umberto S. A fuzzy description logic[A]. Proceeding of AAAI 98 15th Conference of the American Association for Artificial Intelligence[C]. 1998, 594-599.
  • 3Umberto S. Reasoning within fuzzy description logics[J]. Journal of Artificial Intelligence Research, 2001, 14: 137-166.
  • 4Hajek P. Making fuzzy description logic more general[J]. Fuzzy Sets and Systems, 2005, 154: 1-15.
  • 5Bobillo F, Straccia U. A fuzzy description logic with product T-norm[A]. Proceeding ofIEEE International Conference on Fuzzy Systems[C]. 2007, 1-6.
  • 6Bobillo F, Delgado M, Straccia U. Fuzzy description logics under Godel semantics[J]. Inter- national Journal of Approximate Reasoning, 2009, 50: 494-514.
  • 7Garca-Cerdafia A, Armengo E, Esteva F. Fuzzy description logics and t-norm based fuzzy logics[J]. International Journal of Approximate Reasoning, 2010, 51: 632-655.
  • 8Pei Daowu. Ro implication: characteristics and applications[J]. Fuzzy Sets and Systems, 2002. 131: 297-302.
  • 9王国俊,钱桂生,党创寅.命题演算系统L~*与谓词演算系统κ~*中统一的近似推理理论[J].中国科学(E辑),2004,34(10):1110-1122. 被引量:13

二级参考文献21

  • 1Gorz G, Holldobler S. Advances in Artificial Intelligence. Lecture Notes in Artificial Intelligence 1137,New Yrok: Springer-Verlag, 1996
  • 2Lloyd J W. Foundations of Logic Programming. New York: Springer-Verlag, 1987
  • 3Schumann J M. Automated Theorem Proving in Software Engineering. Berlin: Springer-Verlag, 2001
  • 4Chang C L, Lee R C. Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1987
  • 5Antoniou G. Nonmonotonic Reasoning. Cambridge: The MIT Press,1997
  • 6Williamson J, Gabbay D. Special issue on combining probability and logic. J Applied Logic, 2003, 1(1-2): 135-138
  • 7Goguen J A. The logic of inexact concepts. Syntheses, 1968/69, 19(3):325-373
  • 8Pavelka J. On fuzzy logic Ⅰ, Ⅱ,Ⅲ. Z.f. Math. Logik u Grundlagen d Math, 1979, 25(1-3): 45-72,119-134, 447-464
  • 9Wang G J, Leung Y. Integrated semantics and logic metric spaces. Fuzzy Sets and Systems, 2003, 136(1): 71-91
  • 10Engelking R. General Topology. Berlin: Heldermann Verlag, 1989

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部