摘要
应用锥上的不动点定理,研究变系数二阶Neumann边值问题{x″(t)+m2(t)x(t)=f(t)g(t,x(t)),t∈(0,1),x′(0)=0,x′(1)=0正解的存在性,其中m∈C([0,1],(0,+∞)),f,g可以在t=0,1或x=0处奇异.给出了此类问题有一个正解存在的充分条件,所获主要结果推广和改进了一些已有的结果.
In this paper, the existence of positive solutions for the second-order Neumann boundary value problem with a variable coefficient {x"(t)+m2(t)x(t)=f(t)g(t,x(t)),t∈(0,1)x'(0)=0,x'(1)=0 is studied, where m ∈ C([0, 1], (0,+∞)), f, g may be singular at t = 0, 1 or x =0. By using the fixed point theorem, the sufficient conditions for the existence of positive solutions of the above mentioned problem are obtained. The theorems obtained improve and extend previous known results.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2013年第4期477-487,共11页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
关键词
变系数
锥
不动点定理
正解
存在性
奇异性
variable coefficient
cone
fixed point theorem
positive solutions
existence
singular