期刊文献+

一种基于局域边缘特征的自适应立体匹配新算法研究

A new adaptive stereo matching method based on local edge features
下载PDF
导出
摘要 立体匹配,其目的是在对两幅存在一定视差的图像进行匹配后,获得两幅图像精确的视差图,是计算机视觉领域的重点和难点问题。为了快速、高效地获得高精度的稠密视差图,在充分研究了基于边缘特征的立体匹配和基于局部窗口的立体匹配两类算法的基础上,提出了一种基于局域边缘特征的自适应立体匹配算法。首先该算法自适应地选择局部匹配窗口大小,并计算其中相应位置的权值,实现初次匹配,然后再以基于边缘特征匹配获得的高精度稀疏视差图作为约束,修正部分误匹配点,最终获得准确、稠密的视差图。实验表明,该算法具良好的实验结果和较大的实用价值。 Stereo matching is to obtain an accurate disparity image from two images whose pixels existing stereo dis parity between each other. And it is one of the most important and difficult problems in fields of computer vision. After well researching two sorts of typical stereo matching algorithm called stereo matching based on edge features and stereo matching based on the local window respectively, a new stereo matching method based on edge features and the local a daptive supportedweight window is proposed, which aims at getting dense and highprecision disparity image fast and ef ficiently. The algorithm completes the initial windowbased matching by selecting and computing the matching window's size and weight adaptively. Then depending on the highprecision sparse disparity image acquired by the method based on edge features, the algorithm can eliminate many mismatching points. After these operations, dense and highprecision disparity image is obtained. The final experiments show the method is effective and of great practical value.
出处 《光学技术》 CAS CSCD 北大核心 2013年第6期510-516,共7页 Optical Technique
基金 上海市教委科研创新项目(11YZ116) 上海理工大学校国家级项目与文科基地培育计划课题(12XGM04) 上海市大学生创新活动计划项目(SH1110252142) 上海理工大学医疗器械与食品学院微创励志创新基金
关键词 图像处理 立体匹配 自适应匹配 特征匹配 image processing stereo matehing adaptive matching feature matching
  • 相关文献

参考文献11

  • 1Jian Sun, Nan-Ning Zheng, Heung-Yeung Shum. Stereo matc- hing using belief propagation[A]. IEEE transactions on Pattern Analysis and Maching Intelligence[C] 2003:787 800.
  • 2肖俊,夏林元,林丽群,肖洲.多尺度边缘动态规划立体匹配算法[J].测绘科学,2012,37(1):142-144. 被引量:1
  • 3Wang Daolei, Kah Bin Lim. Obtaining depth map from seg- ment-based stereo matching using graph cuts [J] Journal of Visual Communication and Image Representation, 2011,4 (22) : 325 331.
  • 4Michael Bleyer, Margrit Gelautz. A layered stereo matching al- gorithm using image segmentation and global visibility con straints[J] Journal of Photogrammetry ~ Remote Sensing, 2005, 3(59): 128-150.
  • 5Dong Li , Huijie Zhao, Hongzhi Jiang. Fast Phase-based Stereo Matching Method for 3D shape measurement[A]. 2010 Inter national Symposium on Opt mechatronic Technologies [C]. 2010:1 5.
  • 6Lazaros Nalpantidis, Antonios Gasteratos. Biologically and psy- chophysically inspired adaptive support weights algorithm for stereo correspondence[J]. Robotics and Autonomous Systems, 2010,58:457 464.
  • 7Leonardo De-Maeztu, Arantxa Villanueva, Rafael Cabeza. Ster- eo matching using gradient similarity and locally adaptive sup- port weight[J] Pattern Recognition Letters , 2011,32: 1643- 1651.
  • 8O Veksler. Fast Variable Window for Stereo Correspondence u sing Integral Images[A]. IEEE Conf Computer Vision and Pat- tern Recognition[C]. 2003,1 : 556-561.
  • 9A Fusiello, V Roberto, E Trucco. Efficient Stereo with Multi- ple Windowing[A]. IEEE Conf Computer Vision and Pattern Recognition[C] 1997:858-863.
  • 10S B Kang, R Szeliski, C Jinxjang. Handling Occlusions in Dense Multi-View Stereo[A]. IEEE Conf Computer Vision and Pattern Recognition[C]. 2001 : 103-110.

二级参考文献13

  • 1D Scharstein, R Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [ J ] . International Journal of Computer Vision, 47 ( 1/2/3 ) : 7-42, April-June 2002. Microsoft Research Technical Report MSR-TR-2001-81, November 2001.
  • 2M Z Brown, D Burschka, G D Hager. Advances in computational stereo [ C ] //IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25 (8) : 993-1008.
  • 3T kande, M Okutomi. A stereo matching algorithm with an adaptive window: Theroy and experiment [ C ] // IEEE Transaction on Pattern Analysis and Machine Itelligence, 1994, 16(9): 920-932.
  • 4L Hong, G Chen. Segment-based stereo matching using graph cut [ C ] //Coference on Computer Vision and Pattern Recognition, 2004, 1: 74-81.
  • 5Y Boykov, O Veksler, R Zabih. Fast approximate ener- gy minimization vis graph cuts [ C ] //Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Tech. Rep. , 2003.
  • 6J Sun, Y H Shum, N N Zheng. Stereo matching using belief propagation [ C ] //IEEE transaction on Pattern Analysis and Maching Intelligence, 2003 : 787-800.
  • 7A F Bobick, S S Intile. Large occlusion Stereo [ J] . International Journal of Computer Vision, 1999 : 181-200.
  • 8M Abdollahifard, K Faez, M Pourfard. Fast Stereo Matching Using Two Stage Color-based Segmentation And Dynamic Programming [ C ] //Proc. of the 6th international Symposium on Mechatronics and its Application, 2009.
  • 9Y Ohta, T kanade. Stereo by intra-and inter-scanline search using dynamic programming [ C ] //IEEE Trans- actions on Patteren Analysis and Machine Intelligence, 1985, 7: 139-154.
  • 10M Bleyer, M Gelautz. A layered stereo matching algo- rithm using image segmentation and global visibility con- straints [ J ] . Photogrammetry and Remote Sensing, 2005, 59: 128-150.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部