期刊文献+

基于移动火源的隧道拱顶温度分布规律实验研究 被引量:4

Experimental study on longitudinal temperature distribution law of tunnel ceiling based on moving fire source
下载PDF
导出
摘要 为掌握行进中的着火机动车对隧道拱顶温度场分布的影响规律,以公路隧道为原型建立了1∶20小尺寸实验系统,在隧道自然通风条件下,模拟了移动火源以0.5,0.8和1.0 m/s等不同速度在隧道中行进、停止直至熄灭的火灾过程。研究了移动火源进入隧道后的隧道温度场及火灾过程中隧道拱顶沿纵向温度分布特征、测点温度峰值及梯度变化等规律。研究结果表明:①当火源行进速度为0.5 m/s时,燃烧更加充分,隧道拱顶温度达到峰值,比其余两组高40和50℃;②移动火源的存在,打破了顶棚射流拱顶热烟气与下部冷空气的对流循环动态平衡,减弱了热对流效应,使得隧道内温度降低更缓慢。 In order to reveal the influential law of mobile fire vehicle on the temperature distribution oi tunnel ceiling, the 1 : 20 physical model was designed according to real road tunnel. Under natural ventilation condition, the fire process when mobile fire source with velocity of 0.5,0.8 and 1.0 m/s moved into tunnel then stopped till burned out were studied. The temperature fields when fire source moved into tunnel were studied. The ceiling temperature distribu- tion and temperature peak in fire process and its gradient were analyzed. The research results indicate that:(1) Fire source of 0.5 m/s combusts much more adequately than the other two, which leads the temperature peak of tunnel ceiling 40 and 50 ℃ higher than that of 0.8 m/s and 1.0 m/s fire source ;(2) The existence of moving fire breaks the balance of convective circulation of hot smoke and fresh cold air caused by jet effect, which weakens thermal convec- tion and slows the temperature decrease in tunnel.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2013年第11期1967-1971,共5页 Journal of China Coal Society
基金 教育部创新团队资助项目(IRT0856) 陕西省13115科技创新工程资助项目(2010ZDGC-14)
关键词 隧道 拱顶温度 移动火源 峰值 梯度 tunnel ceiling temperature moving fire source peak value gradient
  • 相关文献

参考文献14

二级参考文献76

共引文献133

同被引文献32

  • 1季经纬,程远平.矿井火灾中火场能见度的估算方法[J].中国矿业大学学报,2006,35(2):149-152. 被引量:6
  • 2闫治国,杨其新,王明年,朱合华.火灾工况下公路隧道竖井通风模式试验研究[J].土木工程学报,2006,39(11):101-106. 被引量:15
  • 3李立明.隧道火灾烟气的温度特征与纵向通风控制研究[D].合肥:中国科学技术大学,2012.
  • 4Kumar S, Cox G. Mathematical modeling of fires in road tun- nels [ C]. In: Proceedings of the 5th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels. Lille, France, 1985:61-76.
  • 5Hitoshi Kurioka, Yasushi Oka, Hiroomi Satoh, et al. Fire proper- ties in near field of square fire source with longitudinal ventila- tion in tunnels [ J]. Fire Safety Journal,2003 (38) :319-340.
  • 6O. Vauquelin, D. Telle. Definition and experimental evaluation of the smoke "confinement velocity" in tunnel fires [ J ]. Fire Safety Journal,2005 (40) :320-330.
  • 7C.G. Fan,J. Ji,Z.H. Gao,J.H. Sun.Experimental study on transverse smoke temperature distribution in road tunnel fires[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research . 2013
  • 8Olivier Vauquelin.Experimental simulations of fire-induced smoke control in tunnels using an “air–helium reduced scale model”: Principle, limitations, results and future[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research . 2007 (2)
  • 9L.H. Hu,R. Huo,H.B. Wang,Y.Z. Li,R.X. Yang.Experimental studies on fire-induced buoyant smoke temperature distribution along tunnel ceiling[J]. Building and Environment . 2006 (11)
  • 10王亚琼,谢永利,刘洪洲,任锐.海底隧道半横向通风孔物理模型试验[J].中国公路学报,2010,23(3):76-82. 被引量:16

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部