期刊文献+

微藻絮凝条件优化及絮体结构特征研究 被引量:5

Study on optimization of microalgae flocculation conditions and floc structure characteristics
下载PDF
导出
摘要 以小球藻为原料,通过正交实验考察了藻液浓度、凝聚剂和絮凝剂用量、pH、搅拌强度对微藻絮凝效果和絮体结构的影响。结果表明,在实验范围内,浊度去除率可达96.43%;各因素中,随着藻液浓度增加,微藻絮凝效果和絮体强度、恢复率、分形维数也随之增加;适当增加凝聚剂用量,有利于提高絮凝效果和絮体强度、恢复率、分形维数;适当增加絮凝剂用量,可提高絮凝效果,但对絮体强度、恢复率、分形维数影响不明显;在酸性条件下,絮凝效果较高,在碱性条件下絮体强度、恢复率、分形维数较高;在保证药剂充分混合条件下,减小快速搅拌时间有利于提高微藻絮凝效果,但对絮体强度、恢复率、分形维数影响不明显。综合考虑絮凝效果和絮体结构两个指标,确认藻液浓度为192 mg/L、FeCl3为40 mg/L、PAM为20 mg/L、pH为5,快速搅拌为150 r/min,1 min和慢速搅拌为50 r/min,15 min时为最优组合。 Chlorella was taken as experimental material and orthogonal experiment was used to test the effects of algae concentration, count of coagulant, count of flocculant, pH, stirring strength on microalgae flocculation effects and floc structures. The results show that the turbidity removal rate can reach 96.43% in the experimental range; among all the factors, the turbidity removal rate, floe strength, recovery rate, fractal dimension increase with the algae concentration rising. Appro- priate increase of coagulant can improve the turbidity removal rate, floc strength, recovery rate, fractal dimension. Appropriate increase of flocculant can promote the turbidity removal rate but ef- fects on floe strength, recovery rate and fractal dimension are not obvious. The turbidity removal rate is much better in acidic condition and the floc strength, recovery rate, fractal dimension are much better in alkaline condition. Reduce the fast stirring time in the reagent thoroughly mixed is better for the microalgae flocculation effect, but has slight effect on floc strength , recovery rate and fractal dimension. Taking flocculation effects and floe structures into consideration, the best combination is set as algae concentration 192 rag/L, FeCI3 40 rag/L, PAM 20 my/L, pH5, fast stirring time(150 r/min) lmin and the low stirring time(50 r/rain) 15 rain.
出处 《可再生能源》 CAS 北大核心 2013年第12期97-102,共6页 Renewable Energy Resources
基金 江苏省自然基金项目(BK2010184)
关键词 小球藻 微藻 絮体强度 恢复率 分形维数 chlorella microalgae floc strength recovery rate fractal dimension
  • 相关文献

参考文献16

  • 1缪晓玲,吴庆余.微藻生物质可再生能源的开发利用[J].可再生能源,2003,21(3):13-16. 被引量:93
  • 2M GRIMA E, E H BELARBI,ACIEN FERNANDEZ F G,et al. Recovery of microalgal biomass and metabo- lites: Process options and economics[J].Biotechnology Advances, 2003, 20(7 - 8) : 491-515.
  • 3GODOS I D, GUZMAN H O,SOTO R,et al. Coagada- tion/flocculation-based removal of algal - bacterial biomass from piggery wastewater treatment [J].Biore- source Technology, 2011,102(2) :923-927.
  • 4张青,邓金花,顾俊荣.2种絮凝剂对水华蓝藻的去除能力[J].江苏农业科学,2009,37(5):316-317. 被引量:5
  • 5HUANG C, PAN J R , SHUHUI H. Collision efficien- cies of algae and kaolin in depth filter: The effect of surface properties of particles [J].Water Research, 1999,33(5) : 1278-1286.
  • 6GAO S S, DU M A, TIAN J Y,et al. Effects of chlo- ride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal [J].Journal of Hazardous Materials, 2010,182 ( 1-3 ) : 827-834.
  • 7GAO S S, YANG J X, TIAN J Y,et al. Electro-coagu- lation - flotation process for algae removal[J].Journai of Hazardous Materials, 2010, 177 ( 1-3 ) : 336-343.
  • 8WANG Y H, ZHOU S G, L1 N,et al. Influences of various aluminum coagulants on algae floc structure, strength and flotation effect[J].Procedia Environmental Sciences, 2011( 8): 75-80.
  • 9XU W Y, GAO B Y, YUE Q Y,et al. Effect of shear force and solution ph on flocs breakage and re-growth formed by nano-all3 polymer [J].Water Research, 2010,44(6) : 1893-1899.
  • 10WANG D S, WU R B, JIANG Y Z,et al. Characteriza- tion of floe structure and strength: role of changing shear rates under various coagulation mechanisms[J]. Colloids and Surfaces A: Physicochemical and En-gineering Aspects, 2011, 379(1-3) :36-42.

二级参考文献12

共引文献112

同被引文献65

  • 1K.H.拉奥,孙宝歧.阴/阳离子混合捕收剂的溶液化学及长石与石英的浮选分离[J].国外金属矿选矿,1994,31(10):36-45. 被引量:25
  • 2胡开辉,汪世华.小球藻的研究开发进展[J].武汉工业学院学报,2005,24(3):27-30. 被引量:43
  • 3邱冠周,伍喜庆,王毓华,冯其明,胡岳华.近年浮选进展[J].金属矿山,2006,35(1):41-52. 被引量:46
  • 4牟洪燕,秦梦华.浅谈絮凝剂的研究进展[J].造纸化学品,2006,18(3):21-25. 被引量:14
  • 5王正烈,周亚平,李松林,等.物理化学:下册[M].北京:高等教育出版社,2008:282-283.
  • 6MEDEIROS DL SALESEA, KIPERSTOKA. Energy production from microalgae biomass :carbon footprint and energy balance [ J]. J Clean Prod,2015,96(6) :493-500.
  • 7MIA T,ELIZABETH S,ROBERT E,et al.A cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants [ J ] .Plant J,2015,81 ( 1 ) : 147-159.
  • 8RA C H, KANG C H, KIM N K, et al. Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress [ J ]. Renew Energ, 2015,80 ( 8 ) : 117-122.
  • 9MACKA S, GOMES E, HOLLIGER C, et al. Harvesting of chloreUa sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea: a potential sustainable feedstock for hydrothermal gasification [ J ]. Bioresour Technol, 2015, 185: 353-361.
  • 10PRAGYA N, PANDEY K K, SAHOO P K. A review on harvesting, oil extraction and biofuels production technologies from microalgae [ J ]. Ren Sustain Energ Rev, 2013,24 ( 8 ) : 159-171.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部