摘要
In this article, we first transform the general uniformly elliptic systems of first order equations with certain conditions into the complex equations, and propose the discontinuous Riemann- Hilbert problem and its modified well-posedness for the complex equations. Then we give a priori estimates of solutions of the modified discontinuous Riemann-Hilbert problem for the complex equations and verify its solvability. Finally the solvability results of the original discontinuous Riemann-Hilbert boundary value problem can be derived. The discontinuous boundary value problem possesses many applications in mechanics and physics etc.
In this article, we first transform the general uniformly elliptic systems of first order equations with certain conditions into the complex equations, and propose the discontinuous Riemann- Hilbert problem and its modified well-posedness for the complex equations. Then we give a priori estimates of solutions of the modified discontinuous Riemann-Hilbert problem for the complex equations and verify its solvability. Finally the solvability results of the original discontinuous Riemann-Hilbert boundary value problem can be derived. The discontinuous boundary value problem possesses many applications in mechanics and physics etc.