期刊文献+

The Nonorientable Genus of the Join of Two Cycles

The Nonorientable Genus of the Join of Two Cycles
原文传递
导出
摘要 In this paper, we show that the nonorientable genus of Cm + Cn, the join of two cycles Cm and Cn, is equal to [((m-2)(n-2))/2] if m = 3, n ≡ 1 (mod 2), or m ≥ 4, n ≥ 4, (m, n) (4, 4). We determine that the nonorientable genus of C4 +C4 is 3, and that the nonorientable genus of C3 +Cn is n/2 if n ≡ 0 (mod 2). Our results show that a minimum nonorientable genus embedding of the complete bipartite graph Km,n cannot be extended to an embedding of the join of two cycles without increasing the genus of the surface. In this paper, we show that the nonorientable genus of Cm + Cn, the join of two cycles Cm and Cn, is equal to [((m-2)(n-2))/2] if m = 3, n ≡ 1 (mod 2), or m ≥ 4, n ≥ 4, (m, n) (4, 4). We determine that the nonorientable genus of C4 +C4 is 3, and that the nonorientable genus of C3 +Cn is n/2 if n ≡ 0 (mod 2). Our results show that a minimum nonorientable genus embedding of the complete bipartite graph Km,n cannot be extended to an embedding of the join of two cycles without increasing the genus of the surface.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第12期2305-2320,共16页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.11171114)
关键词 SURFACE nonorientable genus of a graph the join of two graphs Surface, nonorientable genus of a graph, the join of two graphs
  • 相关文献

参考文献9

  • 1Bondy. J. A., Murty, U. S. R.: Graph Theory with Application, Elsevier, Macmillan, London, New York, 1979.
  • 2Ellingham, M. N., Stephens, D. C.: The nonorientable genus of complete graphs with large edgeless graphs. d. Combin. Theory Set. B, 97", 82845 (2007).
  • 3Ellingham, M. N., Stephens, D. C., Zha, X. Y.: The nonorientable genus of complete tripartite graphs. J. Combin. Theory Ser. B, 96, 529 559 (2006).
  • 4Mohar. B., Thomassen, C.: Graphs on Surfaces, Johns Hopkins University Press, Baltimore, 2001.
  • 5Ringe]. G.: Der vollstgndige paare graph auf nichtorientierbaren Flgchen. J. Reine Angew. Math., 220, 88-93 (1965).
  • 6Ringel. G.: Map Color Theorem, Springer-Verlag, Berlin, 1974.
  • 7Ringel. G., Youngs, J. W. T.: Solution of the Heawood map-coloring problem. Proc. Natl. Acad. Sei. USA, 6o, 43s 445 (1968).
  • 8Stahl, S., White, A. T.: Genus embeddings for some complete tripartite graphs. Discrete Math., 14. 279 296 (1976).
  • 9White. A. T.: Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1973.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部