期刊文献+

结合灰度波动信息与C-V模型的骨折股骨数字X线片分割

Segmentation of Fracture Femoral Digital Radiographs Based on Grayscale Fluctuations and C-V Model
下载PDF
导出
摘要 骨折股骨数字X线片具有拓扑结构复杂、灰度分布不均匀的特点,现有方法不能很好地解决此类图像的分割问题,为此提出一种结合灰度波动信息的主动轮廓模型.首先引入灰度波动的概念,获得图像水平方向上的灰度波动曲线;然后依据曲线单调区间对图像进行灰度波动变换;最后重新定义水平集函数,获得一种新的主动轮廓模型,实现对灰度不均匀图像的分割.实验结果表明,该模型能够有效地分割骨折股骨数字X线片,并获得了较高的分割精度. Fracture femoral digital radiographs have the characteristics of complicated topology and inhomogeneous intensity distribution. These characteristics make it difficult to segment images effectively. To address this issue, this paper proposes an active contour model combined with grayscale fluctuation information. First, the concept of gradation fluctuation is introduced, and a grayscale fluctuation curve is obtained in the horizontal direction of images. Second, grayscale fluctuation transformation on images is performed according to the monotone interval. Last, the new active contour model is obtained by redefining the level set function, and the inhomogeneous intensity image segmentation is realized accordingly. Experimental results show that the proposed model effectively segments the fracture femoral digital radiographs with high accuracy.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第12期1868-1876,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 黑龙江省自然科学基金(QC2010062) 哈尔滨市科技创新人才研究专项资金(2011RFQXS086)
关键词 医学图像分割 Chan—Vese模型 数字X线片 灰度波动 股骨 medical image segmentation Chan-Vese model digital radiographs grayscale fluctuations femur
  • 相关文献

参考文献19

  • 1Zhang B, Sun S B, SunJ W, et al . 3D reconstruction method from biplanar radiography using DL T algorithm: application to the femur[CJ //Proceedings of the 1st International Conference on Pervasive Computing Signal Processing and Applications. Los Alamitos: IEEE Computer Society Press, 2010: 251-254.
  • 2依玉峰,高立群,崔兆华,史圣伦.基于PSO的Live Wire交互式图像分割算法[J].东北大学学报(自然科学版),2011,32(2):193-196. 被引量:2
  • 3Boykov Y y,Jolly M P. Interactive graph cuts for optimal boundary &. region segmentation of objects in N -D images[CJ //Proceedings of the 8th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2001, 1: 105-112.
  • 4郑伟,康朝红.基于梯度的低对比度X线图像分割方法[J].通信技术,2009,42(1):292-294. 被引量:13
  • 5Gamage r , Xie S Q, Delmas r. et al. Segmentation of radiographic images under topological constraints: application to the femur[J]. InternationalJournal of Computer Assisted Radiology and Surgery, 2010, 5(5): 425-435.
  • 6Galibarov P E, Prendergast PJ, Lennon A B. A method to reconstruct patient-specific proximal femur surface models from planar pre-operative radiographs[J]. Medical Engineering &. Physics, 2010, 32(10): 1180-1188.
  • 7Wang L, Li C M, Sun Q S, et al. Brain MR image segmentation using local and global intensity fitting active contours/ surfaces[MJ / /Lecture Notes in Computer Science. Heidelberg: Springer, 2008, 5241: 384-392.
  • 8Li C M, Xu C v; Anderson A W, et al . MRI tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework[MJ / /Lecture Notes in Computer Science. Heidelberg: Springer, 2009, 5636: 288-299.
  • 9Zhang T, Freedman D. Tracking objects using density matching and shape priors[CJ //Proceedings of the 9th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2003, 2: 1056-1062.
  • 10Kichenassamy S, Kumar A, Olver P, et al. Gradient flows and geometric active contour models[CJ IIProceedings of the 5th International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 1995: 810-815.

二级参考文献60

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部