期刊文献+

基于负荷划分数据和支持向量机的火电厂燃烧过程建模 被引量:7

Coal-fired power plant boiler combustion process modeling based on support vector machine and load data division
下载PDF
导出
摘要 为建立燃烧过程稳态模型,首先利用稳态检测算法提取稳态样本;针对稳态数据中的不均衡性,提出了一种基于负荷划分数据的方法,即根据负荷工况将样本划分成训练子集与测试子集,以提高模型的泛化性能。利用单因素图形分析方法确定3个模型参数的搜索范围,将网格搜索与交叉验证相结合选择最优的模型参数,在此基础上建立了一个300MW燃煤火电厂机组锅炉燃烧过程的支持向量机模型,包括锅炉效率、NOx排放量、排烟温度和飞灰含碳量4个过程输出。结果表明,经过参数优化的4个输出模型均具有很好的泛化性能。 Boiler combustion process modeling is critical for the accuracy and reliability of combustion optimization. Firstly, a steady-state detection (SSD) algorithm is used to extract steady-state samples for building steady state combustion process model. Considering the unbalance of samples over power load, a new method of data division, which divides the available data into training subset and test subset according to load, is proposed to improve model generalization. Then, a single factor graph analysis is conducted to determine searching range of three SVM model structural parameters. After choosing the model parameters by combining grid search with cross validation, four multiple inputs single output SVM models, including boiler efficiency, NO2 emission, flue gas temperature and the unburned carbon in fly ash, are established based on the divided data. The results are demonstrated that four models all have a good generalization capability.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第12期4496-4502,共7页 CIESC Journal
基金 国家自然科学基金项目(61273145 61273146 60934007) 浙江省重点科技创新团队计划项目(2009R50007)~~
关键词 燃烧过程建模 支持向量回归 稳态检测 参数选择 combustion process modeling support vectors regression steady-state detection parameterselection
  • 相关文献

参考文献20

  • 1Booth R C, Roland W B.Neural network-based combustion optimization reduces NOx emissions while improving performance//Proceedings of the American Power Conference[C].1998, 2:667-672.
  • 2Zhou Hao, Cen Kefa, Fan Jianren.Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks[J].Energy, 2004, 29 (1):167-183.
  • 3Zheng Ligang, Zhou Hao, Wang Chunling, Cen Kefa. Combining support vector regression and ant colony optimization to reduce NOx emissions in coal-fired utility boilers[J].Energy & Fuels, 2008, 22 (2):1034-1040.
  • 4Shakil M, Moustafa Elshafei, Mohamed A Habib, Maleki F A.Soft sensor for NOx and O2 using dynamic neural networks[J].Computers and Electrical Engineering, 2009, 35 (8):578-586.
  • 5Gu Yanping, Zhao Wenjie, Wu Zhansong.Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems[J].Journal of Process Control, 2011, 21 (7):1040-1048.
  • 6Zheng Lingang, Zhou Hao, Cen Kefa, Wang Chunlin.A comparative study of optimization algorithms for low NOx combustion modification at a coal-fired utility boiler[J].Expert Systems with Applications, 2009, 36 (2):2780-2793.
  • 7Zhou Hao, Zheng Ligang, Cen Kefa.Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler[J].Energy Conversion and Management, 2010, 51 (3):580-586.
  • 8王春林,周昊,周樟华,凌忠钱,李国能,岑可法.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-76. 被引量:97
  • 9王培红,李磊磊,陈强,董益华.人工智能技术在电站锅炉燃烧优化中的应用研究[J].中国电机工程学报,2004,24(4):184-188. 被引量:95
  • 10Frohlich Holger, Abdreas Zell.Efficient parameter selection for support vector machines in classification and regression via model-based global optimization//IEEE International Joint Conference on Neural Networks[C].2005, 3:1431-1436.

二级参考文献22

  • 1占勇,丁屹峰,程浩忠,曾德君.电力系统谐波分析的稳健支持向量机方法研究[J].中国电机工程学报,2004,24(12):43-47. 被引量:60
  • 2张国云,章兢.基于模糊支持向量机的多级二叉树分类器的水轮机调速系统故障诊断[J].中国电机工程学报,2005,25(8):100-104. 被引量:36
  • 3周昊 朱洪波 曾庭华 等(Zhou Hao Zhu Hongbo Zeng Tinghua et al.)大型四角切圆燃烧锅炉NOx排放特性的神经网络模型(An artificial neural network model on NOx emission property of a high capacity tangentially firing boiler)[J]..
  • 4张学工译 Vapnik著.统计学习理论[M].北京:电子工业出版社,2004..
  • 5Keerthi S S,Lin C J.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Computation,2003,15(7):1667-1689.
  • 6Lin H T,Lin C J.A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods[EB] .March 2003.http:∥www.csie.ntu.edu.tw/~cjlin/papers.html.
  • 7Maohong Fan,Robert C.Brown.Precision and accuracy of photoacoustic measurements of unburned carbon in fly ash[J].Fuel,2001,80(11): 1545-1554.
  • 8Katarzyna Styszko-Grochowiak,Janusz Golas,Henryk Jankowski et al. Characterization of the coal fly ash for the purpose of improvement of industrial on-line measurement of unburned carbon content[J]. Fuel, 2004,83(13):1847-1853.
  • 9Ouazzane A K,Castagner J L,Jones A R et al.Design of an optical instrument to measure the carbon content of fly ash[J].Fuel, 2002,81(15):1907-1911.
  • 10李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..

共引文献182

同被引文献95

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部