期刊文献+

基于同步优化的代价敏感支持向量机优良类操作模式识别

Excellent operational pattern recognition based on simultaneously optimizing cost-sensitive support vector machine
下载PDF
导出
摘要 针对氧化铝蒸发过程操作模式集中类别不平衡和噪声特征问题,提出基于同步优化的代价敏感支持向量机操作模式识别方法。对氧化铝蒸发过程机理进行分析,该过程的输入条件、操作参数和状态参数被选为原始操作模式,利用离散的粒子群算法优化操作模式的特征集,选择最优特征子集作为最终的操作模式;同时利用连续的粒子群算法优化代价敏感支持向量机的核参数和误分类代价参数,自动搜索和确定最优的核参数和误分类代价参数。工业应用结果表明,与粒子群优化操作模式特征子集或粒子群优化核参数和误分类代价参数相比,所提出的方法优良类操作模式识别高,误分类代价低。 Aiming at class-imbalanced operational pattern recognition and noise features for alumina evaporation process (AEP), a simultaneously optimizing cost-sensitive support vector machine (CSVM) is proposed in this paper. Studying the mechanism of AEP, input conditions, operating parameters and state parameters are selected as original operational pattern. The feature set of original operational pattern are optimized by the binary particle swarm optimization and the optimal feature subset is selected as the operational pattern. Meanwhile, the sigma of Gaussian kernel and miselassification cost parameters for CSVM are optimized by the linear weight diminishing particle swarm optimization. The proposed method is applied on the operational pattern optimization of AEP. Experimental results illustrate that the proposedmethod increases excellent operational pattern recogn{tion rates and reduces misclassification costs.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第12期4509-4514,共6页 CIESC Journal
基金 国家杰出青年科学基金项目(61025015) 湖南省教育厅重点项目(12A007) 桥梁工程湖南省高校重点实验室重点项目 长沙理工大学人才引进基金项目~~
关键词 代价敏感支持向量机 操作模式 特征选择 实验验证 氧化铝 算法 cost sensitive support vector machine operational pattern feature selection experimentalvalidation alumina algorithm
  • 相关文献

参考文献20

  • 1Zhu Hongqiu,Chai Qinqin,Yang Chunhua,Wang Xiaoli. Vortex motion-based particle swarm optimisation for energy consumption of alumina evaporation[J].The Canadian Journal of Chemical Engineering,2012,90(6):1418-1425.
  • 2桂卫华,阳春华,李勇刚,贺建军,尹林子.基于数据驱动的铜闪速熔炼过程操作模式优化及应用[J].自动化学报,2009,35(6):717-724. 被引量:39
  • 3胡志坤,桂卫华,阳春华,彭小奇.铜转炉吹炼过程熔剂加入量的模糊操作模式挖掘方法[J].控制与决策,2010,25(11):1689-1692. 被引量:6
  • 4Vapnik V N.Statistical Learning Theory[M].New York:Wiley,1998.
  • 5Shao Yuanhai,Deng Naiyang,Yang Zhimin,Chen Weijie,Wang Zhen.Probabilistic outputs for twin support vector machines[J].Knowledge-Based Systems,2012,33(9):145-151.
  • 6Tian Yingjie,Shi Yong,Liu Xiaohui.Recent advances on support vector machines research[J].Technological and Economic Development of Economy,2012,18(1):5-33.
  • 7Kim M.Large margin cost-sensitive learning of conditional random fields[J].Pattern Recognition,2010,43(10):3683-3692.
  • 8Liu A,Jun G,Ghosh J.A self-training approach to cost sensitive uncertainty sampling[J].Machine Learning,2009,76(2):257-270.
  • 9Park Y J,Chun S H,Kim B C.Cost-sensitive case-based reasoning using a genetic algorithm:application to medical diagnosis[J].Artificial Intelligence in Medicine,2011,51(2):133-145.
  • 10Sen P,Getoor L.Cost-sensitive learning with conditional Markov networks[J].Data Mining and Knowledge Discovery,2008,17(2):136-163.

二级参考文献24

  • 1桂卫华,李勇刚,阳春华,陈志盛.基于改进聚类算法的分布式SVM及其应用[J].控制与决策,2004,19(8):852-856. 被引量:13
  • 2胡志坤,桂卫华,彭小奇,姚俊峰,张卫华.铜转炉生产操作模式智能优化[J].控制理论与应用,2005,22(2):243-247. 被引量:16
  • 3严爱军,柴天佑,岳恒.竖炉焙烧过程的多变量智能优化控制[J].自动化学报,2006,32(4):636-640. 被引量:20
  • 4Zhang J. Batch-to-batch optimal control of a batch polymerization process based on stacked neural network models. Chemical Engineering Science, 2008, 63(5): 1273-1281
  • 5Yang C H, Cui W H, Kong L S, Wang X L. A genetic- algorithm-based optimal scheduling system for full-filled tanks in the processing of starting materials for alumina production. Canadian Journal of Chemical Engineering, 2008, 86(4): 804-812
  • 6Yang C H, Gui W H, Kong L S, Wang Y L. A two-stage intelligent optimization system for the raw slurry preparing process of alumina sintering production. Engineering Applications of Artificial Intelligence, to be published
  • 7Thornhill N F, Horch A. Advances and new directions in plant-wide disturbance detection and diagnosis [J]. Control Engineering Practice, 2007, 15 (10) : 1196-1206.
  • 8Ding E L, Fennel H, Ding S X. Model-based diagnosis of sensor faults for ESP systems [J]. Control Engineering Practice, 2004, 12 (7): 847-856.
  • 9Liu X, Kruger U, Littler T, Xie L, Wang S. Moving window kernel PCA for adaptive monitoring of nonlinear processes [J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96:132-143.
  • 10Lee J M, Qin S, Lee J I. Fault detection and diagnosis based on modified independent component analysis [J ].AIChEJournal, 2006, 52 (10): 3501-3514.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部