期刊文献+

消除脉冲噪声的改进自适应滤波算法 被引量:2

Improved Adaptive Filtering Algorithm for Removing Pulse Noise
下载PDF
导出
摘要 针对灰度图像受脉冲噪声污染后的恢复处理问题,提出了一种改进的自适应中值滤波算法。该方法根据脉冲噪声的分布特点,采用极大值、极小值和领域均值判定准则进行噪声点的检测,然后用检测窗口内最小非噪声点集合的中值作为噪声点的滤波输出。实验结果表明,与其他几种算法相比,文中算法不仅在峰值信噪比(Peak Signal to Noise Ratio)和结构相似度(Structural Similarity,SSIM)上有较大优势,而且还具有较低的时间复杂度和更好的自适应性。也进一步说明该方法不仅能有效地检测并滤除噪声点,还能较好地保护图像的边缘细节。 This paper proposes images polluted by impulse noise. an improved adaptive median filtering algorithm for the recovery of gray-scale According to the distributed noise, this method checks and identifies noise through maximum-minimum and field mean criterion, and then filters noise using the median of the smallest noise free pixels collection in the detected window. Experimental results indicate that the proposed method is of higher peak signal noise ratio (PSNR) and structural similarity (SSIM) and has lower time complexity and better adaptabili- ty than other methods. Furthermore, the proposed method can not only effectively detect and filter out the noise but also preserve the image details.
作者 艾超 胡方明
出处 《电子科技》 2013年第12期5-9,33,共6页 Electronic Science and Technology
关键词 图像去噪 脉冲噪声 中值滤波 领域均值 自适应滤波 image denoising pulse noise median filtering field mean adaptive filtering
  • 相关文献

参考文献10

  • 1ZHOU W,ZHANG D. Progressive switching median filter for the removal of impulse noise from highly corrupted images [J]. IEEE Transactions on Circuits and Systems If: Analog and Digital Signal Processing, 1999,46( 1 ) :78 - 80.
  • 2ABREU E,LIGHTSTONE M, MITRA S K, et al. A new effi- cient approach for the removal of impulse noise from highly corrupted images [ J 1- IEEE Transactions on Image Process- ing, 1996,5 (6) : 1012 - 1025.
  • 3ESAKKIRAJAN S, VEERAKUMAR T, SUBRAMANYAM A N, et al. Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed medi- an filter [ J ]. Signal Processing Letters, iEEE,2011,18 (5) : 287 - 290.
  • 4DEKA B, BORA P K. A noncausal linear prediction based switching median filter for the removal of salt and pepper noise [ C]. Signal Processing and Communications (SP- COM) ,2012 : 1 - 5.
  • 5PALABAS T, GANGAL A. Adaptive fuzzy filter combined with median filter for reducing intensive salt and pepper noise in gray level images [ C]. Innovations in Intelligent Systems and Applications (INISTA) ,2012 : 1 - 4.
  • 6HWANG H, HADDAD R A. Adaptive median filters:new al- gorithms and results [ J]. IEEE Transactions on Image Pro-cessing, 1995,4 (4) :499 - 502.
  • 7NALLAPERUMAL K, VARGHESE J, SAUDIA S, et al. Salt & pepper impulse noise removal using adaptive switching median filter [ C ]. Berlin : OCEANS ,2006 : 1 - 8.
  • 8LUO W B. Efficient removal of impulse noise from digital im- ages [J]. IEEE Transactions on Consumer Electronics, 2006,52 (2) :523 - 527.
  • 9CHAN R H, HO C W, NIKOLOVA M. Salt -and -pepper noise removal by median -type noise detectors and detail - preserving regularization [J]. IEEE Transactions on Image Processing,2005,14 (10) : 1479 - 1485.
  • 10ZHOU W, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity [ J ]. IEEE Transactions on Image Processing, 2004,13 (4) : 600 - 612.

同被引文献25

  • 1Fehn C. Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV[J]. Proceed- ings of SPIE-The International Society for Optical Engineer- ing, 2004(5291 ):93-104.
  • 2Kauff P, Atzpadin N, Fehn C, et al. Depth map creation and image-based rendering for advanced 3DTV services pro- viding intemperability and scalability [J]. Signal Processing Image Communication, 2007, 22 (2) :217-234.
  • 3Kang S B. A survey of image-based rendering techniques[J]. Videometrics Spie, 1997(3641):2-16.
  • 4Szeliski R S, Salesin D, Sch6dl A. Video-based rendering: IET, US 6636220 BL[P]. 2003.
  • 5. Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[C]//Stereo and Multi-Baseline Vision, 2001. (SMBV 2001). Proceed- ings. IEEE Workshop on. IEEE, 2001:131-140.
  • 6Mori Y, Fukushima N, Yendo T, et al. View generation with 3D warping using depth information for YI'V [J]. Signal Processing Image Communication, 2009, 24(S1-2):65-72.
  • 7Daribo I, Pesquet-Popescu B. Depth-aided image inpainting for novel view synthesis [C]//Mu]timodia Signal Processing (MMSP), 2010 IEEE International Workshop on. IEEE, 2010:167-170.
  • 8Oh K J, Yea S, Ho Y S. Hole filling method using depth based in-painting for view synthesis in free viewpoint television and 3-D video[C]//Picture Coding Symposium.
  • 9Yang X, Liu J, Sun J, et al. DIBR based view synthesis for free-viewpoint television[C]//Proceedings of the 3DTV Con- ference, The True Vision-Capture, Transmission and Dis-play of 3D Video (3DTV-CON), 2011:1-4.
  • 10Do L, Zinger S, Morvan Y, et al. Quality improving techniques for free-viewpoint DIBR[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2009 (7524):1-4.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部