期刊文献+

一类带有饱和与竞争项捕食模型解的线性稳定性

Linear Stability of Solutions of a Predator-Prey Model with Predator Saturation and Competition Function
下载PDF
导出
摘要 将一类边界条件为Neumann边界、带有饱和与竞争项的捕食模型转化为非负常稳态解的线性化方程,该线性方程方程所对应的矩阵的特征值的实部都是负的,进而确定该模型非负常稳态解是线性稳定的,并得到模型非负常稳态解的存在性和线性稳定性的充分条件是0<k<a/(1+ab)和ab<kc(1+ab). We linearizes a class of predator-prey model at the nonnegative constant steady states solutions, which has saturation and competition functional response under homogeneous Neumann boundary conditions, the eigenvalues of the corresponding matrix on the linearization equation have negative real parts, and then ensure that the nonnegative constant steady states solutions is linearly stable, and obtain the sufficient conditions: 0 〈 k 〈 a / (1 + ab) and ab 〈 kc(1 + ab) of existence and linear stability of the nonnegative constant steady states solutions of model.
出处 《湖北文理学院学报》 2013年第11期11-14,共4页 Journal of Hubei University of Arts and Science
基金 湖北省教育厅科研计划项目(Q20122504 D20122501)
关键词 饱和与竞争捕食模型 NEUMANN边界 非负常稳态解 线性稳定性 Saturation and competition predator-prey model Neumann boundary Normegative constant steadystates solutions Linear stability
  • 相关文献

参考文献4

  • 1CANTRELL ROBERT STEPHEN, COSNER CHRIS. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2001, 257(1): 206-222.
  • 2BAZYKIN A D. Nonlinear dynamics of interacting populations[M]. Singapore: World Scientific, 1998.
  • 3孟义杰,肖氏武.一类带有饱和与竞争函数项的捕食模型解的稳定性[J].湖北文理学院学报,2012,33(11):8-10. 被引量:2
  • 4HENRY D. Lecture Notes in Mathematics[M]. Berlin: Springer-Verlag, 1993.

二级参考文献4

  • 1CANTRELL R S, COSNER C. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2001, 257(1): 206-222.
  • 2BAZYKIN A D, KHIBNIK ALEKSANDR IOSIFOVICH, KRAUSKOPF BERND. Nonlinear Dynamics of Interacting Populations[M]. Singapore: World Scientific, 1998.
  • 3WANG M X, WU Q. Positive solutions of a prey-predator model with predator saturation and competition[J]. Mathematical Analysis and Applications, 2008, 345(2): 708-718.
  • 4叶其孝,李正元,王明新,等.反应扩散方程引论[M].2版.北京:科学出版社,2011.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部